metastable-baselines/metastable_baselines/distributions/distributions.py

198 lines
7.4 KiB
Python
Raw Normal View History

2022-06-30 20:40:30 +02:00
from typing import Any, Dict, List, Optional, Tuple, Union
import torch as th
from torch import nn
from torch.distributions import Normal, MultivariateNormal
from stable_baselines3.common.preprocessing import get_action_dim
from stable_baselines3.common.distributions import Distribution as SB3_Distribution
from stable_baselines3.common.distributions import DiagGaussianDistribution
class ContextualCovDiagonalGaussianDistribution(DiagGaussianDistribution):
"""
Gaussian distribution with diagonal covariance matrix, for continuous actions.
Includes contextual parametrization of the covariance matrix.
:param action_dim: Dimension of the action space.
"""
def __init__(self, action_dim: int):
super(ContextualCovDiagonalGaussianDistribution, self).__init__()
def proba_distribution_net(self, latent_dim: int, log_std_init: float = 0.0) -> Tuple[nn.Module, nn.Parameter]:
"""
Create the layers and parameter that represent the distribution:
one output will be the mean of the Gaussian, the other parameter will be the
standard deviation (log std in fact to allow negative values)
:param latent_dim: Dimension of the last layer of the policy (before the action layer)
:param log_std_init: Initial value for the log standard deviation
:return:
"""
mean_actions = nn.Linear(latent_dim, self.action_dim)
log_std = nn.Linear(latent_dim, self.action_dim)
return mean_actions, log_std
class ContextualSqrtCovDiagonalGaussianDistribution(DiagGaussianDistribution):
"""
Gaussian distribution induced by its sqrt(cov), for continuous actions.
:param action_dim: Dimension of the action space.
"""
def __init__(self, action_dim: int):
super(DiagGaussianDistribution, self).__init__()
self.action_dim = action_dim
self.mean_actions = None
self.log_std = None
def proba_distribution_net(self, latent_dim: int, log_std_init: float = 0.0) -> Tuple[nn.Module, nn.Parameter]:
"""
Create the layers and parameter that represent the distribution:
one output will be the mean of the Gaussian, the other parameter will be the
standard deviation (log std in fact to allow negative values)
:param latent_dim: Dimension of the last layer of the policy (before the action layer)
:param log_std_init: Initial value for the log standard deviation
:return:
"""
mean_actions = nn.Linear(latent_dim, self.action_dim)
# TODO: allow action dependent std
log_std = nn.Linear(latent_dim, (self.action_dim, self.action_dim))
return mean_actions, log_std
def proba_distribution(self, mean_actions: th.Tensor, log_std: th.Tensor) -> "DiagGaussianDistribution":
"""
Create the distribution given its parameters (mean, std)
:param mean_actions:
:param log_std:
:return:
"""
action_std = th.ones_like(mean_actions) * log_std.exp()
self.distribution = Normal(mean_actions, action_std)
return self
def log_prob(self, actions: th.Tensor) -> th.Tensor:
"""
Get the log probabilities of actions according to the distribution.
Note that you must first call the ``proba_distribution()`` method.
:param actions:
:return:
"""
log_prob = self.distribution.log_prob(actions)
return sum_independent_dims(log_prob)
def entropy(self) -> th.Tensor:
return sum_independent_dims(self.distribution.entropy())
def sample(self) -> th.Tensor:
# Reparametrization trick to pass gradients
return self.distribution.rsample()
def mode(self) -> th.Tensor:
return self.distribution.mean
def actions_from_params(self, mean_actions: th.Tensor, log_std: th.Tensor, deterministic: bool = False) -> th.Tensor:
# Update the proba distribution
self.proba_distribution(mean_actions, log_std)
return self.get_actions(deterministic=deterministic)
def log_prob_from_params(self, mean_actions: th.Tensor, log_std: th.Tensor) -> Tuple[th.Tensor, th.Tensor]:
"""
Compute the log probability of taking an action
given the distribution parameters.
:param mean_actions:
:param log_std:
:return:
"""
actions = self.actions_from_params(mean_actions, log_std)
log_prob = self.log_prob(actions)
return actions, log_prob
class DiagGaussianDistribution(SB3_Distribution):
"""
Gaussian distribution with full covariance matrix, for continuous actions.
:param action_dim: Dimension of the action space.
"""
def __init__(self, action_dim: int):
super(DiagGaussianDistribution, self).__init__()
self.action_dim = action_dim
self.mean_actions = None
self.log_std = None
def proba_distribution_net(self, latent_dim: int, log_std_init: float = 0.0) -> Tuple[nn.Module, nn.Parameter]:
"""
Create the layers and parameter that represent the distribution:
one output will be the mean of the Gaussian, the other parameter will be the
standard deviation (log std in fact to allow negative values)
:param latent_dim: Dimension of the last layer of the policy (before the action layer)
:param log_std_init: Initial value for the log standard deviation
:return:
"""
mean_actions = nn.Linear(latent_dim, self.action_dim)
# TODO: allow action dependent std
log_std = nn.Parameter(th.ones(self.action_dim)
* log_std_init, requires_grad=True)
return mean_actions, log_std
def proba_distribution(self, mean_actions: th.Tensor, log_std: th.Tensor) -> "DiagGaussianDistribution":
"""
Create the distribution given its parameters (mean, std)
:param mean_actions:
:param log_std:
:return:
"""
action_std = th.ones_like(mean_actions) * log_std.exp()
self.distribution = Normal(mean_actions, action_std)
return self
def log_prob(self, actions: th.Tensor) -> th.Tensor:
"""
Get the log probabilities of actions according to the distribution.
Note that you must first call the ``proba_distribution()`` method.
:param actions:
:return:
"""
log_prob = self.distribution.log_prob(actions)
return sum_independent_dims(log_prob)
def entropy(self) -> th.Tensor:
return sum_independent_dims(self.distribution.entropy())
def sample(self) -> th.Tensor:
# Reparametrization trick to pass gradients
return self.distribution.rsample()
def mode(self) -> th.Tensor:
return self.distribution.mean
def actions_from_params(self, mean_actions: th.Tensor, log_std: th.Tensor, deterministic: bool = False) -> th.Tensor:
# Update the proba distribution
self.proba_distribution(mean_actions, log_std)
return self.get_actions(deterministic=deterministic)
def log_prob_from_params(self, mean_actions: th.Tensor, log_std: th.Tensor) -> Tuple[th.Tensor, th.Tensor]:
"""
Compute the log probability of taking an action
given the distribution parameters.
:param mean_actions:
:param log_std:
:return:
"""
actions = self.actions_from_params(mean_actions, log_std)
log_prob = self.log_prob(actions)
return actions, log_prob