375 lines
15 KiB
Python
375 lines
15 KiB
Python
|
# Copyright (c) 2021 Robert Bosch GmbH
|
||
|
# Author: Fabian Otto
|
||
|
#
|
||
|
# This program is free software: you can redistribute it and/or modify
|
||
|
# it under the terms of the GNU Affero General Public License as published
|
||
|
# by the Free Software Foundation, either version 3 of the License, or
|
||
|
# (at your option) any later version.
|
||
|
#
|
||
|
# This program is distributed in the hope that it will be useful,
|
||
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
# GNU Affero General Public License for more details.
|
||
|
#
|
||
|
# You should have received a copy of the GNU Affero General Public License
|
||
|
# along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||
|
|
||
|
import copy
|
||
|
import math
|
||
|
import torch as ch
|
||
|
from typing import Tuple, Union
|
||
|
|
||
|
from trust_region_projections.models.policy.abstract_gaussian_policy import AbstractGaussianPolicy
|
||
|
from trust_region_projections.utils.network_utils import get_optimizer
|
||
|
from trust_region_projections.utils.projection_utils import gaussian_kl, get_entropy_schedule
|
||
|
from trust_region_projections.utils.torch_utils import generate_minibatches, select_batch, tensorize
|
||
|
|
||
|
|
||
|
def entropy_inequality_projection(policy: AbstractGaussianPolicy, p: Tuple[ch.Tensor, ch.Tensor],
|
||
|
beta: Union[float, ch.Tensor]):
|
||
|
"""
|
||
|
Projects std to satisfy an entropy INEQUALITY constraint.
|
||
|
Args:
|
||
|
policy: policy instance
|
||
|
p: current distribution
|
||
|
beta: target entropy for EACH std or general bound for all stds
|
||
|
|
||
|
Returns:
|
||
|
projected std that satisfies the entropy bound
|
||
|
"""
|
||
|
mean, std = p
|
||
|
k = std.shape[-1]
|
||
|
batch_shape = std.shape[:-2]
|
||
|
|
||
|
ent = policy.entropy(p)
|
||
|
mask = ent < beta
|
||
|
|
||
|
# if nothing has to be projected skip computation
|
||
|
if (~mask).all():
|
||
|
return p
|
||
|
|
||
|
alpha = ch.ones(batch_shape, dtype=std.dtype, device=std.device)
|
||
|
alpha[mask] = ch.exp((beta[mask] - ent[mask]) / k)
|
||
|
|
||
|
proj_std = ch.einsum('ijk,i->ijk', std, alpha)
|
||
|
return mean, ch.where(mask[..., None, None], proj_std, std)
|
||
|
|
||
|
|
||
|
def entropy_equality_projection(policy: AbstractGaussianPolicy, p: Tuple[ch.Tensor, ch.Tensor],
|
||
|
beta: Union[float, ch.Tensor]):
|
||
|
"""
|
||
|
Projects std to satisfy an entropy EQUALITY constraint.
|
||
|
Args:
|
||
|
policy: policy instance
|
||
|
p: current distribution
|
||
|
beta: target entropy for EACH std or general bound for all stds
|
||
|
|
||
|
Returns:
|
||
|
projected std that satisfies the entropy bound
|
||
|
"""
|
||
|
mean, std = p
|
||
|
k = std.shape[-1]
|
||
|
|
||
|
ent = policy.entropy(p)
|
||
|
alpha = ch.exp((beta - ent) / k)
|
||
|
proj_std = ch.einsum('ijk,i->ijk', std, alpha)
|
||
|
return mean, proj_std
|
||
|
|
||
|
|
||
|
def mean_projection(mean: ch.Tensor, old_mean: ch.Tensor, maha: ch.Tensor, eps: ch.Tensor):
|
||
|
"""
|
||
|
Projects the mean based on the Mahalanobis objective and trust region.
|
||
|
Args:
|
||
|
mean: current mean vectors
|
||
|
old_mean: old mean vectors
|
||
|
maha: Mahalanobis distance between the two mean vectors
|
||
|
eps: trust region bound
|
||
|
|
||
|
Returns:
|
||
|
projected mean that satisfies the trust region
|
||
|
"""
|
||
|
batch_shape = mean.shape[:-1]
|
||
|
mask = maha > eps
|
||
|
|
||
|
################################################################################################################
|
||
|
# mean projection maha
|
||
|
|
||
|
# if nothing has to be projected skip computation
|
||
|
if mask.any():
|
||
|
omega = ch.ones(batch_shape, dtype=mean.dtype, device=mean.device)
|
||
|
omega[mask] = ch.sqrt(maha[mask] / eps) - 1.
|
||
|
omega = ch.max(-omega, omega)[..., None]
|
||
|
|
||
|
m = (mean + omega * old_mean) / (1 + omega + 1e-16)
|
||
|
proj_mean = ch.where(mask[..., None], m, mean)
|
||
|
else:
|
||
|
proj_mean = mean
|
||
|
|
||
|
return proj_mean
|
||
|
|
||
|
|
||
|
class BaseProjectionLayer(object):
|
||
|
|
||
|
def __init__(self,
|
||
|
proj_type: str = "",
|
||
|
mean_bound: float = 0.03,
|
||
|
cov_bound: float = 1e-3,
|
||
|
trust_region_coeff: float = 0.0,
|
||
|
scale_prec: bool = True,
|
||
|
|
||
|
entropy_schedule: Union[None, str] = None,
|
||
|
action_dim: Union[None, int] = None,
|
||
|
total_train_steps: Union[None, int] = None,
|
||
|
target_entropy: float = 0.0,
|
||
|
temperature: float = 0.5,
|
||
|
entropy_eq: bool = False,
|
||
|
entropy_first: bool = False,
|
||
|
|
||
|
do_regression: bool = False,
|
||
|
regression_iters: int = 1000,
|
||
|
regression_lr: int = 3e-4,
|
||
|
optimizer_type_reg: str = "adam",
|
||
|
|
||
|
cpu: bool = True,
|
||
|
dtype: ch.dtype = ch.float32,
|
||
|
):
|
||
|
|
||
|
"""
|
||
|
Base projection layer, which can be used to compute metrics for non-projection approaches.
|
||
|
Args:
|
||
|
proj_type: Which type of projection to use. None specifies no projection and uses the TRPO objective.
|
||
|
mean_bound: projection bound for the step size w.r.t. mean
|
||
|
cov_bound: projection bound for the step size w.r.t. covariance matrix
|
||
|
trust_region_coeff: Coefficient for projection regularization loss term.
|
||
|
scale_prec: If true used mahalanobis distance for projections instead of euclidean with Sigma_old^-1.
|
||
|
entropy_schedule: Schedule type for entropy projection, one of 'linear', 'exp', None.
|
||
|
action_dim: number of action dimensions to scale exp decay correctly.
|
||
|
total_train_steps: total number of training steps to compute appropriate decay over time.
|
||
|
target_entropy: projection bound for the entropy of the covariance matrix
|
||
|
temperature: temperature decay for exponential entropy bound
|
||
|
entropy_eq: Use entropy equality constraints.
|
||
|
entropy_first: Project entropy before trust region.
|
||
|
do_regression: Conduct additional regression steps after the the policy steps to match projection and policy.
|
||
|
regression_iters: Number of regression steps.
|
||
|
regression_lr: Regression learning rate.
|
||
|
optimizer_type_reg: Optimizer for regression.
|
||
|
cpu: Compute on CPU only.
|
||
|
dtype: Data type to use, either of float32 or float64. The later might be necessary for higher
|
||
|
dimensions in order to learn the full covariance.
|
||
|
"""
|
||
|
|
||
|
# projection and bounds
|
||
|
self.proj_type = proj_type
|
||
|
self.mean_bound = tensorize(mean_bound, cpu=cpu, dtype=dtype)
|
||
|
self.cov_bound = tensorize(cov_bound, cpu=cpu, dtype=dtype)
|
||
|
self.trust_region_coeff = trust_region_coeff
|
||
|
self.scale_prec = scale_prec
|
||
|
|
||
|
# projection utils
|
||
|
assert (action_dim and total_train_steps) if entropy_schedule else True
|
||
|
self.entropy_proj = entropy_equality_projection if entropy_eq else entropy_inequality_projection
|
||
|
self.entropy_schedule = get_entropy_schedule(entropy_schedule, total_train_steps, dim=action_dim)
|
||
|
self.target_entropy = tensorize(target_entropy, cpu=cpu, dtype=dtype)
|
||
|
self.entropy_first = entropy_first
|
||
|
self.entropy_eq = entropy_eq
|
||
|
self.temperature = temperature
|
||
|
self._initial_entropy = None
|
||
|
|
||
|
# regression
|
||
|
self.do_regression = do_regression
|
||
|
self.regression_iters = regression_iters
|
||
|
self.lr_reg = regression_lr
|
||
|
self.optimizer_type_reg = optimizer_type_reg
|
||
|
|
||
|
def __call__(self, policy, p: Tuple[ch.Tensor, ch.Tensor], q, step, *args, **kwargs):
|
||
|
# entropy_bound = self.policy.entropy(q) - self.target_entropy
|
||
|
entropy_bound = self.entropy_schedule(self.initial_entropy, self.target_entropy, self.temperature,
|
||
|
step) * p[0].new_ones(p[0].shape[0])
|
||
|
return self._projection(policy, p, q, self.mean_bound, self.cov_bound, entropy_bound, **kwargs)
|
||
|
|
||
|
def _trust_region_projection(self, policy: AbstractGaussianPolicy, p: Tuple[ch.Tensor, ch.Tensor],
|
||
|
q: Tuple[ch.Tensor, ch.Tensor], eps: ch.Tensor, eps_cov: ch.Tensor, **kwargs):
|
||
|
"""
|
||
|
Hook for implementing the specific trust region projection
|
||
|
Args:
|
||
|
policy: policy instance
|
||
|
p: current distribution
|
||
|
q: old distribution
|
||
|
eps: mean trust region bound
|
||
|
eps_cov: covariance trust region bound
|
||
|
**kwargs:
|
||
|
|
||
|
Returns:
|
||
|
projected
|
||
|
"""
|
||
|
return p
|
||
|
|
||
|
# @final
|
||
|
def _projection(self, policy: AbstractGaussianPolicy, p: Tuple[ch.Tensor, ch.Tensor],
|
||
|
q: Tuple[ch.Tensor, ch.Tensor], eps: ch.Tensor, eps_cov: ch.Tensor, beta: ch.Tensor, **kwargs):
|
||
|
"""
|
||
|
Template method with hook _trust_region_projection() to encode specific functionality.
|
||
|
(Optional) entropy projection is executed before or after as specified by entropy_first.
|
||
|
Do not override this. For Python >= 3.8 you can use the @final decorator to enforce not overwriting.
|
||
|
Args:
|
||
|
policy: policy instance
|
||
|
p: current distribution
|
||
|
q: old distribution
|
||
|
eps: mean trust region bound
|
||
|
eps_cov: covariance trust region bound
|
||
|
beta: entropy bound
|
||
|
**kwargs:
|
||
|
|
||
|
Returns:
|
||
|
projected mean, projected std
|
||
|
"""
|
||
|
|
||
|
####################################################################################################################
|
||
|
# entropy projection in the beginning
|
||
|
if self.entropy_first:
|
||
|
p = self.entropy_proj(policy, p, beta)
|
||
|
|
||
|
####################################################################################################################
|
||
|
# trust region projection for mean and cov bounds
|
||
|
proj_mean, proj_std = self._trust_region_projection(policy, p, q, eps, eps_cov, **kwargs)
|
||
|
|
||
|
####################################################################################################################
|
||
|
# entropy projection in the end
|
||
|
if self.entropy_first:
|
||
|
return proj_mean, proj_std
|
||
|
|
||
|
return self.entropy_proj(policy, (proj_mean, proj_std), beta)
|
||
|
|
||
|
@property
|
||
|
def initial_entropy(self):
|
||
|
return self._initial_entropy
|
||
|
|
||
|
@initial_entropy.setter
|
||
|
def initial_entropy(self, entropy):
|
||
|
if self.initial_entropy is None:
|
||
|
self._initial_entropy = entropy
|
||
|
|
||
|
def trust_region_value(self, policy, p, q):
|
||
|
"""
|
||
|
Computes the KL divergence between two Gaussian distributions p and q.
|
||
|
Args:
|
||
|
policy: policy instance
|
||
|
p: current distribution
|
||
|
q: old distribution
|
||
|
Returns:
|
||
|
Mean and covariance part of the trust region metric.
|
||
|
"""
|
||
|
return gaussian_kl(policy, p, q)
|
||
|
|
||
|
def get_trust_region_loss(self, policy: AbstractGaussianPolicy, p: Tuple[ch.Tensor, ch.Tensor],
|
||
|
proj_p: Tuple[ch.Tensor, ch.Tensor]):
|
||
|
"""
|
||
|
Compute the trust region loss to ensure policy output and projection stay close.
|
||
|
Args:
|
||
|
policy: policy instance
|
||
|
proj_p: projected distribution
|
||
|
p: predicted distribution from network output
|
||
|
|
||
|
Returns:
|
||
|
trust region loss
|
||
|
"""
|
||
|
p_target = (proj_p[0].detach(), proj_p[1].detach())
|
||
|
mean_diff, cov_diff = self.trust_region_value(policy, p, p_target)
|
||
|
|
||
|
delta_loss = (mean_diff + cov_diff if policy.contextual_std else mean_diff).mean()
|
||
|
|
||
|
return delta_loss * self.trust_region_coeff
|
||
|
|
||
|
def compute_metrics(self, policy, p, q) -> dict:
|
||
|
"""
|
||
|
Returns dict with constraint metrics.
|
||
|
Args:
|
||
|
policy: policy instance
|
||
|
p: current distribution
|
||
|
q: old distribution
|
||
|
|
||
|
Returns:
|
||
|
dict with constraint metrics
|
||
|
"""
|
||
|
with ch.no_grad():
|
||
|
entropy_old = policy.entropy(q)
|
||
|
entropy = policy.entropy(p)
|
||
|
mean_kl, cov_kl = gaussian_kl(policy, p, q)
|
||
|
kl = mean_kl + cov_kl
|
||
|
|
||
|
mean_diff, cov_diff = self.trust_region_value(policy, p, q)
|
||
|
|
||
|
combined_constraint = mean_diff + cov_diff
|
||
|
entropy_diff = entropy_old - entropy
|
||
|
|
||
|
return {'kl': kl.detach().mean(),
|
||
|
'constraint': combined_constraint.mean(),
|
||
|
'mean_constraint': mean_diff.mean(),
|
||
|
'cov_constraint': cov_diff.mean(),
|
||
|
'entropy': entropy.mean(),
|
||
|
'entropy_diff': entropy_diff.mean(),
|
||
|
'kl_max': kl.max(),
|
||
|
'constraint_max': combined_constraint.max(),
|
||
|
'mean_constraint_max': mean_diff.max(),
|
||
|
'cov_constraint_max': cov_diff.max(),
|
||
|
'entropy_max': entropy.max(),
|
||
|
'entropy_diff_max': entropy_diff.max()
|
||
|
}
|
||
|
|
||
|
def trust_region_regression(self, policy: AbstractGaussianPolicy, obs: ch.Tensor, q: Tuple[ch.Tensor, ch.Tensor],
|
||
|
n_minibatches: int, global_steps: int):
|
||
|
"""
|
||
|
Take additional regression steps to match projection output and policy output.
|
||
|
The policy parameters are updated in-place.
|
||
|
Args:
|
||
|
policy: policy instance
|
||
|
obs: collected observations from trajectories
|
||
|
q: old distributions
|
||
|
n_minibatches: split the rollouts into n_minibatches.
|
||
|
global_steps: current number of steps, required for projection
|
||
|
Returns:
|
||
|
dict with mean of regession loss
|
||
|
"""
|
||
|
|
||
|
if not self.do_regression:
|
||
|
return {}
|
||
|
|
||
|
policy_unprojected = copy.deepcopy(policy)
|
||
|
optim_reg = get_optimizer(self.optimizer_type_reg, policy_unprojected.parameters(), learning_rate=self.lr_reg)
|
||
|
optim_reg.reset()
|
||
|
|
||
|
reg_losses = obs.new_tensor(0.)
|
||
|
|
||
|
# get current projected values --> targets for regression
|
||
|
p_flat = policy(obs)
|
||
|
p_target = self(policy, p_flat, q, global_steps)
|
||
|
|
||
|
for _ in range(self.regression_iters):
|
||
|
batch_indices = generate_minibatches(obs.shape[0], n_minibatches)
|
||
|
|
||
|
# Minibatches SGD
|
||
|
for indices in batch_indices:
|
||
|
batch = select_batch(indices, obs, p_target[0], p_target[1])
|
||
|
b_obs, b_target_mean, b_target_std = batch
|
||
|
proj_p = (b_target_mean.detach(), b_target_std.detach())
|
||
|
|
||
|
p = policy_unprojected(b_obs)
|
||
|
|
||
|
# invert scaling with coeff here as we do not have to balance with other losses
|
||
|
loss = self.get_trust_region_loss(policy, p, proj_p) / self.trust_region_coeff
|
||
|
|
||
|
optim_reg.zero_grad()
|
||
|
loss.backward()
|
||
|
optim_reg.step()
|
||
|
reg_losses += loss.detach()
|
||
|
|
||
|
policy.load_state_dict(policy_unprojected.state_dict())
|
||
|
|
||
|
if not policy.contextual_std:
|
||
|
# set policy with projection value.
|
||
|
# In non-contextual cases we have only one cov, so the projection is the same.
|
||
|
policy.set_std(p_target[1][0])
|
||
|
|
||
|
steps = self.regression_iters * (math.ceil(obs.shape[0] / n_minibatches))
|
||
|
return {"regression_loss": (reg_losses / steps).detach()}
|