metastable-baselines/projections_orig/frob_projection_layer.py

98 lines
4.1 KiB
Python
Raw Normal View History

# Copyright (c) 2021 Robert Bosch GmbH
# Author: Fabian Otto
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import torch as ch
from typing import Tuple
from trust_region_projections.models.policy.abstract_gaussian_policy import AbstractGaussianPolicy
from trust_region_projections.projections.base_projection_layer import BaseProjectionLayer, mean_projection
from trust_region_projections.utils.projection_utils import gaussian_frobenius
class FrobeniusProjectionLayer(BaseProjectionLayer):
def _trust_region_projection(self, policy: AbstractGaussianPolicy, p: Tuple[ch.Tensor, ch.Tensor],
q: Tuple[ch.Tensor, ch.Tensor], eps: ch.Tensor, eps_cov: ch.Tensor, **kwargs):
"""
Runs Frobenius projection layer and constructs cholesky of covariance
Args:
policy: policy instance
p: current distribution
q: old distribution
eps: (modified) kl bound/ kl bound for mean part
eps_cov: (modified) kl bound for cov part
beta: (modified) entropy bound
**kwargs:
Returns: mean, cov cholesky
"""
mean, chol = p
old_mean, old_chol = q
batch_shape = mean.shape[:-1]
####################################################################################################################
# precompute mean and cov part of frob projection, which are used for the projection.
mean_part, cov_part, cov, cov_old = gaussian_frobenius(policy, p, q, self.scale_prec, True)
################################################################################################################
# mean projection maha/euclidean
proj_mean = mean_projection(mean, old_mean, mean_part, eps)
################################################################################################################
# cov projection frobenius
cov_mask = cov_part > eps_cov
if cov_mask.any():
# alpha = ch.where(fro_norm_sq > eps_cov, ch.sqrt(fro_norm_sq / eps_cov) - 1., ch.tensor(1.))
eta = ch.ones(batch_shape, dtype=chol.dtype, device=chol.device)
eta[cov_mask] = ch.sqrt(cov_part[cov_mask] / eps_cov) - 1.
eta = ch.max(-eta, eta)
new_cov = (cov + ch.einsum('i,ijk->ijk', eta, cov_old)) / (1. + eta + 1e-16)[..., None, None]
proj_chol = ch.where(cov_mask[..., None, None], ch.cholesky(new_cov), chol)
else:
proj_chol = chol
return proj_mean, proj_chol
def trust_region_value(self, policy, p, q):
"""
Computes the Frobenius metric between two Gaussian distributions p and q.
Args:
policy: policy instance
p: current distribution
q: old distribution
Returns:
mean and covariance part of Frobenius metric
"""
return gaussian_frobenius(policy, p, q, self.scale_prec)
def get_trust_region_loss(self, policy: AbstractGaussianPolicy, p: Tuple[ch.Tensor, ch.Tensor],
proj_p: Tuple[ch.Tensor, ch.Tensor]):
mean_diff, _ = self.trust_region_value(policy, p, proj_p)
if policy.contextual_std:
# Compute MSE here, because we found the Frobenius norm tends to generate values that explode for the cov
cov_diff = (p[1] - proj_p[1]).pow(2).sum([-1, -2])
delta_loss = (mean_diff + cov_diff).mean()
else:
delta_loss = mean_diff.mean()
return delta_loss * self.trust_region_coeff