71 lines
1.9 KiB
Python
71 lines
1.9 KiB
Python
|
#!/bin/python3
|
||
|
import gym
|
||
|
from gym.envs.registration import register
|
||
|
import numpy as np
|
||
|
import os
|
||
|
import time
|
||
|
import datetime
|
||
|
|
||
|
from stable_baselines3 import SAC, PPO, A2C
|
||
|
from stable_baselines3.common.evaluation import evaluate_policy
|
||
|
from stable_baselines3.common.policies import ActorCriticCnnPolicy, ActorCriticPolicy, MultiInputActorCriticPolicy
|
||
|
|
||
|
from sb3_trl.trl_pg import TRL_PG
|
||
|
import columbus
|
||
|
|
||
|
|
||
|
def main(load_path, n_eval_episodes=0):
|
||
|
load_path = load_path.replace('.zip','')
|
||
|
load_path = load_path.replace("'",'')
|
||
|
load_path = load_path.replace(' ','')
|
||
|
file_name = load_path.split('/')[-1]
|
||
|
# TODO: Ugly, Ugly, Ugly:
|
||
|
env_name = file_name.split('_')[0]
|
||
|
alg_name = file_name.split('_')[1]
|
||
|
alg_deriv = file_name.split('_')[2]
|
||
|
use_sde = file_name.find('sde')!=-1
|
||
|
print(env_name, alg_name, alg_deriv, use_sde)
|
||
|
env = gym.make(env_name)
|
||
|
if alg_name=='ppo':
|
||
|
model = PPO(
|
||
|
"MlpPolicy",
|
||
|
env,
|
||
|
use_sde=use_sde,
|
||
|
)
|
||
|
elif alg_name=='trl' and alg_deriv=='pg':
|
||
|
model = TRL_PG(
|
||
|
"MlpPolicy",
|
||
|
env,
|
||
|
use_sde=use_sde,
|
||
|
)
|
||
|
else:
|
||
|
raise Exception('Algorithm not implemented for replay')
|
||
|
|
||
|
print(model.get_parameters())
|
||
|
|
||
|
model.load(load_path, env=env)
|
||
|
|
||
|
if n_eval_episodes:
|
||
|
mean_reward, std_reward = evaluate_policy(
|
||
|
model, env, n_eval_episodes=n_eval_episodes, deterministic=False)
|
||
|
print('Reward: '+str(round(mean_reward, 3)) +
|
||
|
'±'+str(round(std_reward, 2)))
|
||
|
|
||
|
input('<ready?>')
|
||
|
obs = env.reset()
|
||
|
episode_reward = 0
|
||
|
while True:
|
||
|
time.sleep(1/30)
|
||
|
action, _ = model.predict(obs, deterministic=False)
|
||
|
obs, reward, done, info = env.step(action)
|
||
|
env.render()
|
||
|
episode_reward += reward
|
||
|
if done:
|
||
|
episode_reward = 0.0
|
||
|
obs = env.reset()
|
||
|
env.reset()
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
main(input('[path to model> '))
|