Support SAC for testing

This commit is contained in:
Dominik Moritz Roth 2022-07-19 10:08:47 +02:00
parent 6384d411a9
commit 05dad44b6e

60
test.py
View File

@ -7,11 +7,12 @@ import time
import datetime
from stable_baselines3.common.evaluation import evaluate_policy
from stable_baselines3.common.policies import ActorCriticCnnPolicy, ActorCriticPolicy, MultiInputActorCriticPolicy
from metastable_baselines.distributions.distributions import get_legal_setups
from metastable_baselines.ppo import PPO
# from metastable_baselines.sac import SAC
from metastable_baselines.ppo.policies import MlpPolicy
from metastable_baselines.sac import SAC
from metastable_baselines.ppo.policies import MlpPolicy as MlpPolicyPPO
from metastable_baselines.sac.policies import MlpPolicy as MlpPolicySAC
from metastable_baselines.projections import BaseProjectionLayer, FrobeniusProjectionLayer, WassersteinProjectionLayer, KLProjectionLayer
import columbus
@ -20,11 +21,11 @@ from metastable_baselines.distributions import Strength, ParametrizationType, En
root_path = '.'
def main(env_name='ColumbusCandyland_Aux10-v0', timesteps=2_000_000, showRes=True, saveModel=True, n_eval_episodes=0):
def main(env_name='ColumbusCandyland_Aux10-v0', timesteps=1_000_000, showRes=True, saveModel=True, n_eval_episodes=0):
env = gym.make(env_name)
use_sde = False
ppo = PPO(
MlpPolicy,
MlpPolicyPPO,
env,
projection=FrobeniusProjectionLayer(),
policy_kwargs={'dist_kwargs': {'neural_strength': Strength.FULL, 'cov_strength': Strength.FULL, 'parameterization_type':
@ -39,7 +40,7 @@ def main(env_name='ColumbusCandyland_Aux10-v0', timesteps=2_000_000, showRes=Tru
ent_coef=0.02, # 0.1
vf_coef=0.5,
use_sde=use_sde, # False
clip_range=0.2,
clip_range=1 # 0.2,
)
# trl_frob = PPO(
# MlpPolicy,
@ -66,6 +67,47 @@ def main(env_name='ColumbusCandyland_Aux10-v0', timesteps=2_000_000, showRes=Tru
# saveModel, n_eval_episodes)
def full(env_name='ColumbusCandyland_Aux10-v0', timesteps=35_000, saveModel=True, n_eval_episodes=4):
env = gym.make(env_name)
use_sde = False
skip_num = 8 # 10 (/ start at index)
sac = True
Model = [PPO, SAC][sac]
Policy = [MlpPolicyPPO, MlpPolicySAC][sac]
#projection = FrobeniusProjectionLayer()
projection = BaseProjectionLayer()
gen = enumerate(get_legal_setups(
allowedEPTs=[EnforcePositiveType.SOFTPLUS, EnforcePositiveType.ABS]))
for i in range(skip_num):
gen.__next__()
for i, setup in gen:
(ps, cs, ept, pt) = setup
print('{'+str(i)+'}: '+str(setup))
model = Model(
Policy,
env,
# projection=projection,
policy_kwargs={'dist_kwargs': {'neural_strength': ps, 'cov_strength': cs, 'parameterization_type':
pt, 'enforce_positive_type': ept, 'prob_squashing_type': ProbSquashingType.NONE}},
verbose=0,
tensorboard_log=root_path+"/logs_tb/" +
env_name+"/"+['ppo', 'sac'][sac]+"_" +
("_".join([str(s) for s in setup])+['', '_sde'][use_sde])+"/",
# learning_rate=3e-4,
# gamma=0.99,
# gae_lambda=0.95,
# normalize_advantage=True,
# ent_coef=0.02, # 0.1
# vf_coef=0.5,
use_sde=use_sde, # False
# clip_range=1 # 0.2,
)
testModel(model, timesteps, False,
saveModel, n_eval_episodes)
def testModel(model, timesteps, showRes=False, saveModel=False, n_eval_episodes=16):
env = model.get_env()
try:
@ -108,5 +150,7 @@ def testModel(model, timesteps, showRes=False, saveModel=False, n_eval_episodes=
if __name__ == '__main__':
# main('LunarLanderContinuous-v2')
# main('ColumbusJustState-v0')
main('ColumbusStateWithBarriers-v0')
# main('ColumbusEasierObstacles-v0')
# main('ColumbusStateWithBarriers-v0')
# full('ColumbusEasierObstacles-v0')
# full('ColumbusStateWithBarriers-v0')
full('LunarLanderContinuous-v2')