From 0911a04e988b394466eb8cd4f58f9c3a09c404ca Mon Sep 17 00:00:00 2001 From: Dominik Roth Date: Mon, 4 Jul 2022 21:21:16 +0200 Subject: [PATCH] Factored out Gaussian Collection for RolloutBuffer --- metastable_baselines/misc/rollout_buffer.py | 118 ++++++++++++++++++++ 1 file changed, 118 insertions(+) diff --git a/metastable_baselines/misc/rollout_buffer.py b/metastable_baselines/misc/rollout_buffer.py index c8ed57a..d53cd26 100644 --- a/metastable_baselines/misc/rollout_buffer.py +++ b/metastable_baselines/misc/rollout_buffer.py @@ -6,6 +6,10 @@ from gym import spaces from stable_baselines3.common.buffers import RolloutBuffer from stable_baselines3.common.vec_env import VecNormalize +from stable_baselines3.common.vec_env import VecEnv +from stable_baselines3.common.callbacks import BaseCallback +from stable_baselines3.common.utils import obs_as_tensor + # TRL requires the origina mean and covariance from the policy when the datapoint was created. # GaussianRolloutBuffer extends the RolloutBuffer by these two fields @@ -110,3 +114,117 @@ class GaussianRolloutBuffer(RolloutBuffer): self.stds[batch_inds].reshape((len(batch_inds), -1)), ) return GaussianRolloutBufferSamples(*tuple(map(self.to_torch, data))) + + +class GaussianRolloutCollectorAuxclass(): + def _setup_model(self) -> None: + super()._setup_model() + + self.rollout_buffer = GaussianRolloutBuffer( + self.n_steps, + self.observation_space, + self.action_space, + device=self.device, + gamma=self.gamma, + gae_lambda=self.gae_lambda, + n_envs=self.n_envs, + ) + + def collect_rollouts( + self, + env: VecEnv, + callback: BaseCallback, + rollout_buffer: RolloutBuffer, + n_rollout_steps: int, + ) -> bool: + """ + Collect experiences using the current policy and fill a ``RolloutBuffer``. + The term rollout here refers to the model-free notion and should not + be used with the concept of rollout used in model-based RL or planning. + :param env: The training environment + :param callback: Callback that will be called at each step + (and at the beginning and end of the rollout) + :param rollout_buffer: Buffer to fill with rollouts + :param n_steps: Number of experiences to collect per environment + :return: True if function returned with at least `n_rollout_steps` + collected, False if callback terminated rollout prematurely. + """ + assert self._last_obs is not None, "No previous observation was provided" + # Switch to eval mode (this affects batch norm / dropout) + self.policy.set_training_mode(False) + + n_steps = 0 + rollout_buffer.reset() + # Sample new weights for the state dependent exploration + if self.use_sde: + self.policy.reset_noise(env.num_envs) + + callback.on_rollout_start() + + while n_steps < n_rollout_steps: + if self.use_sde and self.sde_sample_freq > 0 and n_steps % self.sde_sample_freq == 0: + # Sample a new noise matrix + self.policy.reset_noise(env.num_envs) + + with th.no_grad(): + # Convert to pytorch tensor or to TensorDict + obs_tensor = obs_as_tensor(self._last_obs, self.device) + actions, values, log_probs = self.policy(obs_tensor) + dist = self.policy.get_distribution(obs_tensor).distribution + mean, std = dist.mean, dist.stddev + actions = actions.cpu().numpy() + + # Rescale and perform action + clipped_actions = actions + # Clip the actions to avoid out of bound error + if isinstance(self.action_space, spaces.Box): + clipped_actions = np.clip( + actions, self.action_space.low, self.action_space.high) + + new_obs, rewards, dones, infos = env.step(clipped_actions) + + self.num_timesteps += env.num_envs + + # Give access to local variables + callback.update_locals(locals()) + if callback.on_step() is False: + return False + + self._update_info_buffer(infos) + n_steps += 1 + + if isinstance(self.action_space, spaces.Discrete): + # Reshape in case of discrete action + actions = actions.reshape(-1, 1) + + # Handle timeout by bootstraping with value function + # see GitHub issue #633 + for idx, done in enumerate(dones): + if ( + done + and infos[idx].get("terminal_observation") is not None + and infos[idx].get("TimeLimit.truncated", False) + ): + terminal_obs = self.policy.obs_to_tensor( + infos[idx]["terminal_observation"])[0] + with th.no_grad(): + terminal_value = self.policy.predict_values(terminal_obs)[ + 0] + rewards[idx] += self.gamma * terminal_value + + rollout_buffer.add(self._last_obs, actions, rewards, + self._last_episode_starts, values, log_probs, mean, std) + self._last_obs = new_obs + self._last_episode_starts = dones + + with th.no_grad(): + # Compute value for the last timestep + values = self.policy.predict_values( + obs_as_tensor(new_obs, self.device)) + + rollout_buffer.compute_returns_and_advantage( + last_values=values, dones=dones) + + callback.on_rollout_end() + + return True