Fixing sde's bugs
This commit is contained in:
parent
0e4eedae5e
commit
0ee65e789b
@ -143,7 +143,7 @@ class UniversalGaussianDistribution(SB3_Distribution):
|
||||
:param action_dim: Dimension of the action space.
|
||||
"""
|
||||
|
||||
def __init__(self, action_dim: int, use_sde: bool = False, neural_strength: Strength = Strength.DIAG, cov_strength: Strength = Strength.DIAG, parameterization_type: ParametrizationType = ParametrizationType.NONE, enforce_positive_type: EnforcePositiveType = EnforcePositiveType.ABS, prob_squashing_type: ProbSquashingType = ProbSquashingType.NONE, epsilon=1e-6):
|
||||
def __init__(self, action_dim: int, use_sde: bool = False, neural_strength: Strength = Strength.DIAG, cov_strength: Strength = Strength.DIAG, parameterization_type: ParametrizationType = ParametrizationType.NONE, enforce_positive_type: EnforcePositiveType = EnforcePositiveType.ABS, prob_squashing_type: ProbSquashingType = ProbSquashingType.NONE, epsilon=1e-6, sde_learn_features=False, full_sde=None):
|
||||
super(UniversalGaussianDistribution, self).__init__()
|
||||
self.action_dim = action_dim
|
||||
self.par_strength = cast_to_enum(neural_strength, Strength)
|
||||
@ -161,6 +161,10 @@ class UniversalGaussianDistribution(SB3_Distribution):
|
||||
self.gaussian_actions = None
|
||||
|
||||
self.use_sde = use_sde
|
||||
self.learn_features = sde_learn_features
|
||||
|
||||
if full_sde != None:
|
||||
print('[!] Argument full_sde is only provided to remain compatible with vanilla SB3 PPO. It does not serve any function!')
|
||||
|
||||
assert (self.par_type != ParametrizationType.NONE) == (
|
||||
self.cov_strength == Strength.FULL), 'You should set an ParameterizationType iff the cov-strength is full'
|
||||
|
@ -140,10 +140,9 @@ class ActorCriticPolicy(BasePolicy):
|
||||
# Keyword arguments for gSDE distribution
|
||||
if use_sde:
|
||||
add_dist_kwargs = {
|
||||
"full_std": full_std,
|
||||
"squash_output": squash_output,
|
||||
"use_expln": use_expln,
|
||||
"learn_features": False,
|
||||
'use_sde': True,
|
||||
# "use_expln": use_expln,
|
||||
# "learn_features": False,
|
||||
}
|
||||
for k in add_dist_kwargs:
|
||||
dist_kwargs[k] = add_dist_kwargs[k]
|
||||
|
@ -100,18 +100,31 @@ class Actor(BasePolicy):
|
||||
last_layer_dim = net_arch[-1] if len(net_arch) > 0 else features_dim
|
||||
|
||||
if self.use_sde:
|
||||
# TODO: Port to UGD
|
||||
self.action_dist = StateDependentNoiseDistribution(
|
||||
action_dim, full_std=full_std, use_expln=use_expln, learn_features=True, squash_output=True
|
||||
)
|
||||
add_dist_kwargs = {
|
||||
'use_sde': True,
|
||||
# "use_expln": use_expln,
|
||||
# "learn_features": False,
|
||||
}
|
||||
for k in add_dist_kwargs:
|
||||
dist_kwargs[k] = add_dist_kwargs[k]
|
||||
|
||||
self.action_dist = UniversalGaussianDistribution(
|
||||
action_dim, **dist_kwargs)
|
||||
self.mu_net, self.chol_net = self.action_dist.proba_distribution_net(
|
||||
latent_dim=last_layer_dim, latent_sde_dim=last_layer_dim, log_std_init=log_std_init
|
||||
latent_dim=last_layer_dim, latent_sde_dim=last_layer_dim, std_init=math.exp(
|
||||
self.log_std_init)
|
||||
)
|
||||
# self.action_dist = StateDependentNoiseDistribution(
|
||||
# action_dim, full_std=full_std, use_expln=use_expln, learn_features=True, squash_output=True
|
||||
# )
|
||||
# self.mu_net, self.chol_net = self.action_dist.proba_distribution_net(
|
||||
# latent_dim=last_layer_dim, latent_sde_dim=last_layer_dim, log_std_init=log_std_init
|
||||
# )
|
||||
# Avoid numerical issues by limiting the mean of the Gaussian
|
||||
# to be in [-clip_mean, clip_mean]
|
||||
if clip_mean > 0.0:
|
||||
self.mu = nn.Sequential(self.mu, nn.Hardtanh(
|
||||
min_val=-clip_mean, max_val=clip_mean))
|
||||
# if clip_mean > 0.0:
|
||||
# self.mu = nn.Sequential(self.mu, nn.Hardtanh(
|
||||
# min_val=-clip_mean, max_val=clip_mean))
|
||||
else:
|
||||
self.action_dist = UniversalGaussianDistribution(
|
||||
action_dim, **dist_kwargs)
|
||||
@ -120,9 +133,9 @@ class Actor(BasePolicy):
|
||||
self.log_std_init)
|
||||
)
|
||||
|
||||
#self.action_dist = SquashedDiagGaussianDistribution(action_dim)
|
||||
#self.mu = nn.Linear(last_layer_dim, action_dim)
|
||||
#self.log_std = nn.Linear(last_layer_dim, action_dim)
|
||||
# self.action_dist = SquashedDiagGaussianDistribution(action_dim)
|
||||
# self.mu = nn.Linear(last_layer_dim, action_dim)
|
||||
# self.log_std = nn.Linear(last_layer_dim, action_dim)
|
||||
|
||||
def _get_constructor_parameters(self) -> Dict[str, Any]:
|
||||
data = super()._get_constructor_parameters()
|
||||
|
Loading…
Reference in New Issue
Block a user