Fixing sde's bugs

This commit is contained in:
Dominik Moritz Roth 2022-08-14 16:10:22 +02:00
parent 0e4eedae5e
commit 0ee65e789b
3 changed files with 32 additions and 16 deletions

View File

@ -143,7 +143,7 @@ class UniversalGaussianDistribution(SB3_Distribution):
:param action_dim: Dimension of the action space. :param action_dim: Dimension of the action space.
""" """
def __init__(self, action_dim: int, use_sde: bool = False, neural_strength: Strength = Strength.DIAG, cov_strength: Strength = Strength.DIAG, parameterization_type: ParametrizationType = ParametrizationType.NONE, enforce_positive_type: EnforcePositiveType = EnforcePositiveType.ABS, prob_squashing_type: ProbSquashingType = ProbSquashingType.NONE, epsilon=1e-6): def __init__(self, action_dim: int, use_sde: bool = False, neural_strength: Strength = Strength.DIAG, cov_strength: Strength = Strength.DIAG, parameterization_type: ParametrizationType = ParametrizationType.NONE, enforce_positive_type: EnforcePositiveType = EnforcePositiveType.ABS, prob_squashing_type: ProbSquashingType = ProbSquashingType.NONE, epsilon=1e-6, sde_learn_features=False, full_sde=None):
super(UniversalGaussianDistribution, self).__init__() super(UniversalGaussianDistribution, self).__init__()
self.action_dim = action_dim self.action_dim = action_dim
self.par_strength = cast_to_enum(neural_strength, Strength) self.par_strength = cast_to_enum(neural_strength, Strength)
@ -161,6 +161,10 @@ class UniversalGaussianDistribution(SB3_Distribution):
self.gaussian_actions = None self.gaussian_actions = None
self.use_sde = use_sde self.use_sde = use_sde
self.learn_features = sde_learn_features
if full_sde != None:
print('[!] Argument full_sde is only provided to remain compatible with vanilla SB3 PPO. It does not serve any function!')
assert (self.par_type != ParametrizationType.NONE) == ( assert (self.par_type != ParametrizationType.NONE) == (
self.cov_strength == Strength.FULL), 'You should set an ParameterizationType iff the cov-strength is full' self.cov_strength == Strength.FULL), 'You should set an ParameterizationType iff the cov-strength is full'

View File

@ -140,10 +140,9 @@ class ActorCriticPolicy(BasePolicy):
# Keyword arguments for gSDE distribution # Keyword arguments for gSDE distribution
if use_sde: if use_sde:
add_dist_kwargs = { add_dist_kwargs = {
"full_std": full_std, 'use_sde': True,
"squash_output": squash_output, # "use_expln": use_expln,
"use_expln": use_expln, # "learn_features": False,
"learn_features": False,
} }
for k in add_dist_kwargs: for k in add_dist_kwargs:
dist_kwargs[k] = add_dist_kwargs[k] dist_kwargs[k] = add_dist_kwargs[k]

View File

@ -100,18 +100,31 @@ class Actor(BasePolicy):
last_layer_dim = net_arch[-1] if len(net_arch) > 0 else features_dim last_layer_dim = net_arch[-1] if len(net_arch) > 0 else features_dim
if self.use_sde: if self.use_sde:
# TODO: Port to UGD add_dist_kwargs = {
self.action_dist = StateDependentNoiseDistribution( 'use_sde': True,
action_dim, full_std=full_std, use_expln=use_expln, learn_features=True, squash_output=True # "use_expln": use_expln,
) # "learn_features": False,
}
for k in add_dist_kwargs:
dist_kwargs[k] = add_dist_kwargs[k]
self.action_dist = UniversalGaussianDistribution(
action_dim, **dist_kwargs)
self.mu_net, self.chol_net = self.action_dist.proba_distribution_net( self.mu_net, self.chol_net = self.action_dist.proba_distribution_net(
latent_dim=last_layer_dim, latent_sde_dim=last_layer_dim, log_std_init=log_std_init latent_dim=last_layer_dim, latent_sde_dim=last_layer_dim, std_init=math.exp(
self.log_std_init)
) )
# self.action_dist = StateDependentNoiseDistribution(
# action_dim, full_std=full_std, use_expln=use_expln, learn_features=True, squash_output=True
# )
# self.mu_net, self.chol_net = self.action_dist.proba_distribution_net(
# latent_dim=last_layer_dim, latent_sde_dim=last_layer_dim, log_std_init=log_std_init
# )
# Avoid numerical issues by limiting the mean of the Gaussian # Avoid numerical issues by limiting the mean of the Gaussian
# to be in [-clip_mean, clip_mean] # to be in [-clip_mean, clip_mean]
if clip_mean > 0.0: # if clip_mean > 0.0:
self.mu = nn.Sequential(self.mu, nn.Hardtanh( # self.mu = nn.Sequential(self.mu, nn.Hardtanh(
min_val=-clip_mean, max_val=clip_mean)) # min_val=-clip_mean, max_val=clip_mean))
else: else:
self.action_dist = UniversalGaussianDistribution( self.action_dist = UniversalGaussianDistribution(
action_dim, **dist_kwargs) action_dim, **dist_kwargs)