Working on SDC-impl.

This commit is contained in:
Dominik Moritz Roth 2022-07-01 15:14:41 +02:00
parent 4f2e75b7ae
commit 14100cccc8

View File

@ -37,16 +37,16 @@ class Strength(Enum):
class ParametrizationType(Enum): class ParametrizationType(Enum):
CHOL = 0 CHOL = 1
ARCHAKOVA = 1 ARCHAKOVA = 2
class EnforcePositiveType(Enum): class EnforcePositiveType(Enum):
LOG = 0 LOG = 1
RELU = 1 RELU = 2
SELU = 2 SELU = 3
ABS = 3 ABS = 4
SQ = 4 SQ = 5
class UniversalGaussianDistribution(SB3_Distribution): class UniversalGaussianDistribution(SB3_Distribution):
@ -60,8 +60,10 @@ class UniversalGaussianDistribution(SB3_Distribution):
super(UniversalGaussianDistribution, self).__init__() super(UniversalGaussianDistribution, self).__init__()
self.par_strength = Strength.DIAG self.par_strength = Strength.DIAG
self.cov_strength = Strength.DIAG self.cov_strength = Strength.DIAG
self.par_type = None self.par_type = ParametrizationType.CHOL
self.enforce_positive_type = None self.enforce_positive_type = EnforcePositiveType.LOG
self.distribution = None
def proba_distribution_net(self, latent_dim: int, log_std_init: float = 0.0) -> Tuple[nn.Module, nn.Parameter]: def proba_distribution_net(self, latent_dim: int, log_std_init: float = 0.0) -> Tuple[nn.Module, nn.Parameter]:
""" """
@ -74,264 +76,66 @@ class UniversalGaussianDistribution(SB3_Distribution):
:return: :return:
""" """
mean_actions = nn.Linear(latent_dim, self.action_dim) mean_actions = nn.Linear(latent_dim, self.action_dim)
if self.contextual_cov:
log_std = nn.Linear(latent_dim, self.action_dim) if self.par_strength == Strength.NONE:
else: if self.cov_strength == Strength.NONE:
log_std = nn.Parameter( pseudo_cov = th.ones(self.action_dim) * log_std_init
elif self.cov_strength == Strength.SCALAR:
pseudo_cov = th.ones(self.action_dim) * \
nn.Parameter(log_std_init, requires_grad=True)
elif self.cov_strength == Strength.DIAG:
pseudo_cov = nn.Parameter(
th.ones(self.action_dim) * log_std_init, requires_grad=True) th.ones(self.action_dim) * log_std_init, requires_grad=True)
return mean_actions, log_std elif self.cov_strength == Strength.FULL:
# Off-axis init?
pseudo_cov = nn.Parameter(
th.diag_embed(th.ones(self.action_dim) * log_std_init), requires_grad=True)
elif self.par_strength == self.cov_strength:
if self.par_strength == Strength.NONE:
pseudo_cov = th.ones(self.action_dim)
elif self.par_strength == Strength.SCALAR:
std = nn.Linear(latent_dim, 1)
pseudo_cov = th.ones(self.action_dim) * std
elif self.par_strength == Strength.DIAG:
pseudo_cov = nn.Linear(latent_dim, self.action_dim)
elif self.par_strength == Strength.FULL:
raise Exception("Don't know how to implement yet...")
elif self.par_strength > self.cov_strength:
raise Exception(
'The parameterization can not be stronger than the actual covariance.')
else:
if self.par_strength == Strength.SCALAR and self.cov_strength == Strength.DIAG:
factor = nn.Linear(latent_dim, 1)
par_cov = th.ones(self.action_dim) * \
nn.Parameter(1, requires_grad=True)
pseudo_cov = par_cov * factor[0]
elif self.par_strength == Strength.SCALAR and self.cov_strength == Strength.FULL:
raise Exception(
'That does not even make any sense...')
else:
raise Exception(
'Programmer-was-to-lazy-to-implement-this-Exception')
def proba_distribution(self, mean_actions: th.Tensor, log_std: th.Tensor) -> "DiagGaussianDistribution": return mean_actions, pseudo_cov
def proba_distribution(self, mean_actions: th.Tensor, pseudo_cov: th.Tensor) -> "UniversalGaussianDistribution":
""" """
Create the distribution given its parameters (mean, std) Create the distribution given its parameters (mean, pseudo_cov)
:param mean_actions: :param mean_actions:
:param log_std: :param pseudo_cov:
:return: :return:
""" """
action_std = th.ones_like(mean_actions) * log_std.exp() action_std = None
self.distribution = Normal(mean_actions, action_std) # TODO: Needs to be expanded
return self if self.cov_strength == Strength.DIAG:
if self.enforce_positive_type == EnforcePositiveType.LOG:
def log_prob(self, actions: th.Tensor) -> th.Tensor: action_std = pseudo_cov.exp()
""" if action_std == None:
Get the log probabilities of actions according to the distribution. raise Exception('Not yet implemented!')
Note that you must first call the ``proba_distribution()`` method.
:param actions:
:return:
"""
log_prob = self.distribution.log_prob(actions)
return sum_independent_dims(log_prob)
def entropy(self) -> th.Tensor:
return sum_independent_dims(self.distribution.entropy())
def sample(self) -> th.Tensor:
# Reparametrization trick to pass gradients
return self.distribution.rsample()
def mode(self) -> th.Tensor:
return self.distribution.mean
def actions_from_params(self, mean_actions: th.Tensor, log_std: th.Tensor, deterministic: bool = False) -> th.Tensor:
# Update the proba distribution
self.proba_distribution(mean_actions, log_std)
return self.get_actions(deterministic=deterministic)
def log_prob_from_params(self, mean_actions: th.Tensor, log_std: th.Tensor) -> Tuple[th.Tensor, th.Tensor]:
"""
Compute the log probability of taking an action
given the distribution parameters.
:param mean_actions:
:param log_std:
:return:
"""
actions = self.actions_from_params(mean_actions, log_std)
log_prob = self.log_prob(actions)
return actions, log_prob
class DiagGaussianDistribution(SB3_Distribution):
"""
Gaussian distribution with full covariance matrix, for continuous actions.
:param action_dim: Dimension of the action space.
"""
def __init__(self, action_dim: int):
super(DiagGaussianDistribution, self).__init__()
self.action_dim = action_dim
self.mean_actions = None
self.log_std = None
def proba_distribution_net(self, latent_dim: int, log_std_init: float = 0.0) -> Tuple[nn.Module, nn.Parameter]:
"""
Create the layers and parameter that represent the distribution:
one output will be the mean of the Gaussian, the other parameter will be the
standard deviation (log std in fact to allow negative values)
:param latent_dim: Dimension of the last layer of the policy (before the action layer)
:param log_std_init: Initial value for the log standard deviation
:return:
"""
mean_actions = nn.Linear(latent_dim, self.action_dim)
# TODO: allow action dependent std
log_std = nn.Parameter(th.ones(self.action_dim)
* log_std_init, requires_grad=True)
return mean_actions, log_std
def proba_distribution(self, mean_actions: th.Tensor, log_std: th.Tensor) -> "DiagGaussianDistribution":
"""
Create the distribution given its parameters (mean, std)
:param mean_actions:
:param log_std:
:return:
"""
action_std = th.ones_like(mean_actions) * log_std.exp()
self.distribution = Normal(mean_actions, action_std)
return self
def log_prob(self, actions: th.Tensor) -> th.Tensor:
"""
Get the log probabilities of actions according to the distribution.
Note that you must first call the ``proba_distribution()`` method.
:param actions:
:return:
"""
log_prob = self.distribution.log_prob(actions)
return sum_independent_dims(log_prob)
def entropy(self) -> th.Tensor:
return sum_independent_dims(self.distribution.entropy())
def sample(self) -> th.Tensor:
# Reparametrization trick to pass gradients
return self.distribution.rsample()
def mode(self) -> th.Tensor:
return self.distribution.mean
def actions_from_params(self, mean_actions: th.Tensor, log_std: th.Tensor, deterministic: bool = False) -> th.Tensor:
# Update the proba distribution
self.proba_distribution(mean_actions, log_std)
return self.get_actions(deterministic=deterministic)
def log_prob_from_params(self, mean_actions: th.Tensor, log_std: th.Tensor) -> Tuple[th.Tensor, th.Tensor]:
"""
Compute the log probability of taking an action
given the distribution parameters.
:param mean_actions:
:param log_std:
:return:
"""
actions = self.actions_from_params(mean_actions, log_std)
log_prob = self.log_prob(actions)
return actions, log_prob
class ContextualSqrtInducedCovDiagonalGaussianDistribution(DiagGaussianDistribution):
"""
Gaussian distribution induced by its sqrt(cov), for continuous actions.
:param action_dim: Dimension of the action space.
"""
def __init__(self, action_dim: int):
super(DiagGaussianDistribution, self).__init__()
self.action_dim = action_dim
self.mean_actions = None
self.log_std = None
def proba_distribution_net(self, latent_dim: int, log_std_init: float = 0.0) -> Tuple[nn.Module, nn.Parameter]:
"""
Create the layers and parameter that represent the distribution:
one output will be the mean of the Gaussian, the other parameter will be the
standard deviation (log std in fact to allow negative values)
:param latent_dim: Dimension of the last layer of the policy (before the action layer)
:param log_std_init: Initial value for the log standard deviation
:return:
"""
mean_actions = nn.Linear(latent_dim, self.action_dim)
log_std = nn.Linear(latent_dim, (self.action_dim, self.action_dim))
return mean_actions, log_std
def proba_distribution(self, mean_actions: th.Tensor, log_std: th.Tensor) -> "DiagGaussianDistribution":
"""
Create the distribution given its parameters (mean, std)
:param mean_actions:
:param log_std:
:return:
"""
action_std = th.ones_like(mean_actions) * log_std.exp()
self.distribution = Normal(mean_actions, action_std)
return self
def log_prob(self, actions: th.Tensor) -> th.Tensor:
"""
Get the log probabilities of actions according to the distribution.
Note that you must first call the ``proba_distribution()`` method.
:param actions:
:return:
"""
log_prob = self.distribution.log_prob(actions)
return sum_independent_dims(log_prob)
def entropy(self) -> th.Tensor:
return sum_independent_dims(self.distribution.entropy())
def sample(self) -> th.Tensor:
# Reparametrization trick to pass gradients
return self.distribution.rsample()
def mode(self) -> th.Tensor:
return self.distribution.mean
def actions_from_params(self, mean_actions: th.Tensor, log_std: th.Tensor, deterministic: bool = False) -> th.Tensor:
# Update the proba distribution
self.proba_distribution(mean_actions, log_std)
return self.get_actions(deterministic=deterministic)
def log_prob_from_params(self, mean_actions: th.Tensor, log_std: th.Tensor) -> Tuple[th.Tensor, th.Tensor]:
"""
Compute the log probability of taking an action
given the distribution parameters.
:param mean_actions:
:param log_std:
:return:
"""
actions = self.actions_from_params(mean_actions, log_std)
log_prob = self.log_prob(actions)
return actions, log_prob
class DiagGaussianDistribution(SB3_Distribution):
"""
Gaussian distribution with full covariance matrix, for continuous actions.
:param action_dim: Dimension of the action space.
"""
def __init__(self, action_dim: int):
super(DiagGaussianDistribution, self).__init__()
self.action_dim = action_dim
self.mean_actions = None
self.log_std = None
def proba_distribution_net(self, latent_dim: int, log_std_init: float = 0.0) -> Tuple[nn.Module, nn.Parameter]:
"""
Create the layers and parameter that represent the distribution:
one output will be the mean of the Gaussian, the other parameter will be the
standard deviation (log std in fact to allow negative values)
:param latent_dim: Dimension of the last layer of the policy (before the action layer)
:param log_std_init: Initial value for the log standard deviation
:return:
"""
mean_actions = nn.Linear(latent_dim, self.action_dim)
# TODO: allow action dependent std
log_std = nn.Parameter(th.ones(self.action_dim)
* log_std_init, requires_grad=True)
return mean_actions, log_std
def proba_distribution(self, mean_actions: th.Tensor, log_std: th.Tensor) -> "DiagGaussianDistribution":
"""
Create the distribution given its parameters (mean, std)
:param mean_actions:
:param log_std:
:return:
"""
action_std = th.ones_like(mean_actions) * log_std.exp()
self.distribution = Normal(mean_actions, action_std) self.distribution = Normal(mean_actions, action_std)
if self.distribution == None:
raise Exception('Not yet implemented!')
return self return self
def log_prob(self, actions: th.Tensor) -> th.Tensor: def log_prob(self, actions: th.Tensor) -> th.Tensor: