From 1a49a412c0a310ada729ca45eb1bf1d044de47bb Mon Sep 17 00:00:00 2001 From: Dominik Roth Date: Sat, 25 Jun 2022 14:50:19 +0200 Subject: [PATCH] expanding automatic testing --- test.py | 104 ++++++++++++++++++++++++++++++++++++++++---------------- 1 file changed, 74 insertions(+), 30 deletions(-) diff --git a/test.py b/test.py index 735e7af..cb32cfb 100755 --- a/test.py +++ b/test.py @@ -16,21 +16,66 @@ import columbus #root_path = os.getcwd() root_path = '.' -def main(env_name='ColumbusStateWithBarriers-v0'): + +def main(env_name='ColumbusCandyland_Aux10-v0', timesteps=5000, showRes=False, saveModel=True, n_eval_episodes=8): env = gym.make(env_name) - ppo_latent_sde = PPO( + test_sde = False + ppo = PPO( "MlpPolicy", env, verbose=0, - tensorboard_log=root_path+"/logs_tb/"+env_name+"/ppo_latent_sde/", - use_sde=True, - sde_sample_freq=30*15, - #ent_coef=0.0016/1.25, #0.0032 - #vf_coef=0.00025/2, #0.0005 - #gamma=0.99, # 0.95 - #learning_rate=0.005/5 # 0.015 + tensorboard_log=root_path+"/logs_tb/"+env_name+"/ppo/", + learning_rate=3e-4, + gamma=0.99, + gae_lambda=0.95, + normalize_advantage=True, + ent_coef=0.15, # 0.1 + vf_coef=0.5, + use_sde=False, # False ) - #sac_latent_sde = SAC( + trl_pg = TRL_PG( + "MlpPolicy", + env, + verbose=0, + tensorboard_log=root_path+"/logs_tb/"+env_name+"/trl_pg/", + learning_rate=3e-4, + gamma=0.99, + gae_lambda=0.95, + normalize_advantage=True, + ent_coef=0.15, # 0.1 + vf_coef=0.5, + use_sde=False, # False + ) + if test_sde: + ppo_latent_sde = PPO( + "MlpPolicy", + env, + verbose=0, + tensorboard_log=root_path+"/logs_tb/"+env_name+"/ppo_latent_sde/", + learning_rate=3e-4, + gamma=0.99, + gae_lambda=0.95, + normalize_advantage=True, + ent_coef=0.15, # 0.1 + vf_coef=0.5, + use_sde=True, # False + sde_sample_freq=30*15, # -1 + ) + trl_pg_latent_sde = TRL_PG( + "MlpPolicy", + env, + verbose=0, + tensorboard_log=root_path+"/logs_tb/"+env_name+"/trl_pg_latent_sde/", + learning_rate=3e-4, + gamma=0.99, + gae_lambda=0.95, + normalize_advantage=True, + ent_coef=0.15, # 0.1 + vf_coef=0.5, + use_sde=True, # False + sde_sample_freq=30*15, # -1 + ) + # sac_latent_sde = SAC( # "MlpPolicy", # env, # verbose=0, @@ -40,34 +85,32 @@ def main(env_name='ColumbusStateWithBarriers-v0'): # ent_coef=0.0016, #0.0032 # gamma=0.99, # 0.95 # learning_rate=0.001 # 0.015 - #) - #trl = TRL_PG( - # "MlpPolicy", - # env, - # verbose=0, - # tensorboard_log="./logs_tb/"+env_name+"/trl_pg/", - #) + # ) - print('PPO_LATENT_SDE:') - testModel(ppo_latent_sde, 500000, showRes = True, saveModel=True, n_eval_episodes=3) - #print('SAC_LATENT_SDE:') - #testModel(sac_latent_sde, 250000, showRes = True, saveModel=True, n_eval_episodes=0) - #print('TRL_PG:') - #testModel(trl) + print('PPO:') + testModel(ppo, timesteps, showRes, + saveModel, n_eval_episodes) + print('TRL_PG:') + testModel(trl_pg, timesteps, showRes, + saveModel, n_eval_episodes) -def testModel(model, timesteps=150000, showRes=False, saveModel=False, n_eval_episodes=16): +def testModel(model, timesteps, showRes=False, saveModel=False, n_eval_episodes=16): env = model.get_env() model.learn(timesteps) if saveModel: now = datetime.datetime.now().strftime('%d.%m.%Y-%H:%M') - loc = root_path+'/models/'+model.tensorboard_log.replace(root_path+'/logs_tb/','').replace('/','_')+now+'.zip' + loc = root_path+'/models/' + \ + model.tensorboard_log.replace( + root_path+'/logs_tb/', '').replace('/', '_')+now+'.zip' model.save(loc) if n_eval_episodes: - mean_reward, std_reward = evaluate_policy(model, env, n_eval_episodes=n_eval_episodes, deterministic=False) - print('Reward: '+str(round(mean_reward,3))+'±'+str(round(std_reward,2))) + mean_reward, std_reward = evaluate_policy( + model, env, n_eval_episodes=n_eval_episodes, deterministic=False) + print('Reward: '+str(round(mean_reward, 3)) + + '±'+str(round(std_reward, 2))) if showRes: input('') @@ -75,7 +118,7 @@ def testModel(model, timesteps=150000, showRes=False, saveModel=False, n_eval_ep # Evaluate the agent episode_reward = 0 while True: - time.sleep(1/env.fps) + time.sleep(1/30) action, _ = model.predict(obs, deterministic=False) obs, reward, done, info = env.step(action) env.render() @@ -86,5 +129,6 @@ def testModel(model, timesteps=150000, showRes=False, saveModel=False, n_eval_ep obs = env.reset() env.reset() -if __name__=='__main__': - main() + +if __name__ == '__main__': + main('CartPole-v1')