Working on UniversalGaussianDistribution

This commit is contained in:
Dominik Moritz Roth 2022-07-13 19:38:57 +02:00
parent fae19509bc
commit 3304fd49f6

View File

@ -1,6 +1,7 @@
from typing import Any, Dict, List, Optional, Tuple, Union
from enum import Enum
import gym
import torch as th
from torch import nn
from torch.distributions import Normal, MultivariateNormal
@ -10,10 +11,14 @@ from stable_baselines3.common.preprocessing import get_action_dim
from stable_baselines3.common.distributions import sum_independent_dims
from stable_baselines3.common.distributions import Distribution as SB3_Distribution
from stable_baselines3.common.distributions import (
BernoulliDistribution,
CategoricalDistribution,
MultiCategoricalDistribution,
# StateDependentNoiseDistribution,
)
from stable_baselines3.common.distributions import DiagGaussianDistribution
from ..misc.fakeModule import FakeModule
from ..misc.distTools import new_dist_like
from ..misc.tensor_ops import fill_triangular
# TODO: Integrate and Test what I currently have before adding more complexity
@ -34,7 +39,9 @@ class Strength(Enum):
class ParametrizationType(Enum):
CHOL = 1
SPHERICAL_CHOL = 2
# Not (yet?) implemented:
#GIVENS = 3
#NNLN_EIGEN = 4
class EnforcePositiveType(Enum):
@ -45,7 +52,7 @@ class EnforcePositiveType(Enum):
LOG = (4, th.log)
def __init__(self, value, func):
self.value = value
self.val = value
self._func = func
def apply(self, x):
@ -57,7 +64,7 @@ class ProbSquashingType(Enum):
TANH = (1, th.tanh)
def __init__(self, value, func):
self.value = value
self.val = value
self._func = func
def apply(self, x):
@ -92,6 +99,38 @@ def get_legal_setups(allowedEPTs=None, allowedParStrength=None, allowedCovStreng
yield (ps, cs, ept, None)
def make_proba_distribution(
action_space: gym.spaces.Space, use_sde: bool = False, dist_kwargs: Optional[Dict[str, Any]] = None
) -> SB3_Distribution:
"""
Return an instance of Distribution for the correct type of action space
:param action_space: the input action space
:param use_sde: Force the use of StateDependentNoiseDistribution
instead of DiagGaussianDistribution
:param dist_kwargs: Keyword arguments to pass to the probability distribution
:return: the appropriate Distribution object
"""
if dist_kwargs is None:
dist_kwargs = {}
if isinstance(action_space, gym.spaces.Box):
assert len(
action_space.shape) == 1, "Error: the action space must be a vector"
return UniversalGaussianDistribution(get_action_dim(action_space), use_sde=use_sde, **dist_kwargs)
elif isinstance(action_space, gym.spaces.Discrete):
return CategoricalDistribution(action_space.n, **dist_kwargs)
elif isinstance(action_space, gym.spaces.MultiDiscrete):
return MultiCategoricalDistribution(action_space.nvec, **dist_kwargs)
elif isinstance(action_space, gym.spaces.MultiBinary):
return BernoulliDistribution(action_space.n, **dist_kwargs)
else:
raise NotImplementedError(
"Error: probability distribution, not implemented for action space"
f"of type {type(action_space)}."
" Must be of type Gym Spaces: Box, Discrete, MultiDiscrete or MultiBinary."
)
class UniversalGaussianDistribution(SB3_Distribution):
"""
Gaussian distribution with configurable covariance matrix shape and optional contextual parametrization mechanism, for continuous actions.
@ -99,8 +138,9 @@ class UniversalGaussianDistribution(SB3_Distribution):
:param action_dim: Dimension of the action space.
"""
def __init__(self, action_dim: int, neural_strength=Strength.DIAG, cov_strength=Strength.DIAG, parameterization_type=Strength.CHOL, enforce_positive_type=EnforcePositiveType.ABS, prob_squashing_type=ProbSquashingType.TANH):
def __init__(self, action_dim: int, use_sde: bool = False, neural_strength: Strength = Strength.DIAG, cov_strength: Strength = Strength.DIAG, parameterization_type: ParametrizationType = ParametrizationType.CHOL, enforce_positive_type: EnforcePositiveType = EnforcePositiveType.ABS, prob_squashing_type: ProbSquashingType = ProbSquashingType.NONE):
super(UniversalGaussianDistribution, self).__init__()
self.action_dim = action_dim
self.par_strength = neural_strength
self.cov_strength = cov_strength
self.par_type = parameterization_type
@ -109,18 +149,27 @@ class UniversalGaussianDistribution(SB3_Distribution):
self.distribution = None
self._flat_chol_len = action_dim * (action_dim + 1) // 2
if self.prob_squashing_type != ProbSquashingType.NONE:
raise Exception('ProbSquasing is not yet implmenented!')
def new_dist_like_me(self, mean, pseudo_chol):
if use_sde:
raise Exception('SDE is not yet implemented')
def new_dist_like_me(self, mean: th.Tensor, chol: th.Tensor):
p = self.distribution
np = new_dist_like(p, mean, pseudo_chol)
if isinstance(p, th.distributions.Normal):
if p.stddev.shape != chol.shape:
chol = th.diagonal(chol, dim1=1, dim2=2)
np = th.distributions.Normal(mean, chol)
elif isinstance(p, th.distributions.MultivariateNormal):
np = th.distributions.MultivariateNormal(mean, scale_tril=chol)
new = UniversalGaussianDistribution(self.action_dim, neural_strength=self.par_strength, cov_strength=self.cov_strength,
parameterization_type=self.par_strength, enforce_positive_type=self.enforce_positive_type, prob_squashing_type=self.prob_squashing_type)
new.distribution = np
return new
def proba_distribution_net(self, latent_dim: int, std_init: float = 0.0) -> Tuple[nn.Module, nn.Module]:
def proba_distribution_net(self, latent_dim: int, latent_sde_dim: int, std_init: float = 0.0) -> Tuple[nn.Module, nn.Module]:
"""
Create the layers and parameter that represent the distribution:
one output will be the mean of the Gaussian, the other parameter will be the
@ -133,126 +182,16 @@ class UniversalGaussianDistribution(SB3_Distribution):
assert std_init >= 0.0, "std can not be initialized to a negative value."
# TODO: Allow chol to be vector when only diagonal.
# TODO: Implement SDE
self.latent_sde_dim = latent_sde_dim
mean_actions = nn.Linear(latent_dim, self.action_dim)
if self.par_strength == Strength.NONE:
if self.cov_strength == Strength.NONE:
pseudo_cov_par = th.ones(self.action_dim) * std_init
elif self.cov_strength == Strength.SCALAR:
pseudo_cov_par = th.ones(self.action_dim) * \
nn.Parameter(std_init, requires_grad=True)
pseudo_cov_par = self._ensure_positive_func(pseudo_cov_par)
elif self.cov_strength == Strength.DIAG:
pseudo_cov_par = nn.Parameter(
th.ones(self.action_dim) * std_init, requires_grad=True)
pseudo_cov_par = self._ensure_positive_func(pseudo_cov_par)
elif self.cov_strength == Strength.FULL:
# TODO: Init Off-axis differently?
param = nn.Parameter(
th.ones(self._full_params_len) * std_init, requires_grad=True)
pseudo_cov_par = self._parameterize_full(param)
chol = FakeModule(pseudo_cov_par)
elif self.par_strength == self.cov_strength:
if self.par_strength == Strength.SCALAR:
std = nn.Linear(latent_dim, 1)
diag_chol = th.ones(self.action_dim) * std
chol = self._ensure_positive_func(diag_chol)
elif self.par_strength == Strength.DIAG:
diag_chol = nn.Linear(latent_dim, self.action_dim)
chol = self._ensure_positive_func(diag_chol)
elif self.par_strength == Strength.FULL:
params = nn.Linear(latent_dim, self._full_params_len)
chol = self._parameterize_full(params)
elif self.par_strength > self.cov_strength:
raise Exception(
'The parameterization can not be stronger than the actual covariance.')
else:
if self.par_strength == Strength.SCALAR and self.cov_strength == Strength.DIAG:
chol = self._parameterize_hybrid_from_scalar(latent_dim)
elif self.par_strength == Strength.DIAG and self.cov_strength == Strength.FULL:
chol = self._parameterize_hybrid_from_diag(latent_dim)
elif self.par_strength == Strength.SCALAR and self.cov_strength == Strength.FULL:
raise Exception(
'That does not even make any sense...')
else:
raise Exception("This Exception can't happen")
chol = CholNet(latent_dim, self.action_dim, std_init, self.par_strength,
self.cov_strength, self.par_type, self.enforce_positive_type, self.prob_squashing_type)
return mean_actions, chol
@property
def _full_params_len(self):
if self.par_type == ParametrizationType.CHOL:
return self._flat_chol_len
elif self.par_type == ParametrizationType.SPHERICAL_CHOL:
return self._flat_chol_len
raise Exception()
def _parameterize_full(self, params):
if self.par_type == ParametrizationType.CHOL:
return self._chol_from_flat(params)
elif self.par_type == ParametrizationType.SPHERICAL_CHOL:
return self._chol_from_flat_sphe_chol(params)
raise Exception()
def _parameterize_hybrid_from_diag(self, params):
# TODO: Implement the hybrid-method for DIAG -> FULL (parameters for pearson-correlation-matrix)
raise Exception(
'Programmer-was-to-lazy-to-implement-this-Exception')
def _parameterize_hybrid_from_scalar(self, latent_dim):
# SCALAR => DIAG
factor = nn.Linear(latent_dim, 1)
par = th.ones(self.action_dim) * \
nn.Parameter(1, requires_grad=True)
diag_chol = self._ensure_positive_func(par * factor[0])
return diag_chol
def _chol_from_flat(self, flat_chol):
chol = fill_triangular(flat_chol).expand(self._flat_chol_len, -1, -1)
return self._ensure_diagonal_positive(chol)
def _chol_from_flat_sphe_chol(self, flat_sphe_chol):
pos_flat_sphe_chol = self._ensure_positive_func(flat_sphe_chol)
sphe_chol = fill_triangular(pos_flat_sphe_chol).expand(
self._flat_chol_len, -1, -1)
chol = self._chol_from_sphe_chol(sphe_chol)
return chol
def _chol_from_sphe_chol(self, sphe_chol):
# TODO: Test with batched data
# TODO: Make efficient
# Note:
# We must should ensure:
# S[i,1] > 0 where i = 1..n
# S[i,j] e (0, pi) where i = 2..n, j = 2..i
# We already ensure S > 0 in _chol_from_flat_sphe_chol
# We ensure < pi by applying tanh*pi to all applicable elements
S = sphe_chol
n = self.action_dim
L = th.zeros_like(sphe_chol)
for i in range(n):
for j in range(i):
t = S[i, 1]
for k in range(1, j+1):
t *= th.sin(th.tanh(S[i, k])*pi)
if i != j:
t *= th.cos(th.tanh(S[i, j+1])*pi)
L[i, j] = t
return L
def _ensure_positive_func(self, x):
return self.enforce_positive_type.apply(x)
def _ensure_diagonal_positive(self, chol):
if len(chol.shape) == 1:
# If our chol is a vector (representing a diagonal chol)
return self._ensure_positive_func(chol)
return chol.tril(-1) + self._ensure_positive_func(chol.diagonal(dim1=-2,
dim2=-1)).diag_embed() + chol.triu(1)
def proba_distribution(self, mean_actions: th.Tensor, chol: th.Tensor) -> "UniversalGaussianDistribution":
def proba_distribution(self, mean_actions: th.Tensor, chol: th.Tensor, latent_pi: nn.Module) -> "UniversalGaussianDistribution":
"""
Create the distribution given its parameters (mean, chol)
@ -260,6 +199,8 @@ class UniversalGaussianDistribution(SB3_Distribution):
:param chol:
:return:
"""
# TODO: latent_pi is for SDE, implement.
if self.cov_strength in [Strength.NONE, Strength.SCALAR, Strength.DIAG]:
self.distribution = Normal(mean_actions, chol)
elif self.cov_strength in [Strength.FULL]:
@ -306,3 +247,158 @@ class UniversalGaussianDistribution(SB3_Distribution):
actions = self.actions_from_params(mean_actions, log_std)
log_prob = self.log_prob(actions)
return actions, log_prob
class CholNet(nn.Module):
def __init__(self, latent_dim: int, action_dim: int, std_init: float, par_strength: Strength, cov_strength: Strength, par_type: ParametrizationType, enforce_positive_type: EnforcePositiveType, prob_squashing_type: ProbSquashingType):
super().__init__()
self.latent_dim = latent_dim
self.action_dim = action_dim
self.par_strength = par_strength
self.cov_strength = cov_strength
self.par_type = par_type
self.enforce_positive_type = enforce_positive_type
self.prob_squashing_type = prob_squashing_type
self._flat_chol_len = action_dim * (action_dim + 1) // 2
# Yes, this is ugly.
# But I don't know how this mess could be elegantly abstracted away...
if self.par_strength == Strength.NONE:
if self.cov_strength == Strength.NONE:
self.chol = th.ones(self.action_dim) * std_init
elif self.cov_strength == Strength.SCALAR:
self.param = nn.Parameter(std_init, requires_grad=True)
elif self.cov_strength == Strength.DIAG:
self.params = nn.Parameter(
th.ones(self.action_dim) * std_init, requires_grad=True)
elif self.cov_strength == Strength.FULL:
# TODO: Init Off-axis differently?
self.params = nn.Parameter(
th.ones(self._full_params_len) * std_init, requires_grad=True)
elif self.par_strength == self.cov_strength:
if self.par_strength == Strength.SCALAR:
self.std = nn.Linear(latent_dim, 1)
elif self.par_strength == Strength.DIAG:
self.diag_chol = nn.Linear(latent_dim, self.action_dim)
elif self.par_strength == Strength.FULL:
self.params = nn.Linear(latent_dim, self._full_params_len)
elif self.par_strength > self.cov_strength:
raise Exception(
'The parameterization can not be stronger than the actual covariance.')
else:
if self.par_strength == Strength.SCALAR and self.cov_strength == Strength.DIAG:
self.factor = nn.Linear(latent_dim, 1)
self.param = nn.Parameter(1, requires_grad=True)
elif self.par_strength == Strength.DIAG and self.cov_strength == Strength.FULL:
# TODO
pass
elif self.par_strength == Strength.SCALAR and self.cov_strength == Strength.FULL:
# TODO
pass
else:
raise Exception("This Exception can't happen")
def forward(self, x: th.Tensor) -> th.Tensor:
# Ugly mess pt.2:
if self.par_strength == Strength.NONE:
if self.cov_strength == Strength.NONE:
return self.chol
elif self.cov_strength == Strength.SCALAR:
return self._ensure_positive_func(
th.ones(self.action_dim) * self.param)
elif self.cov_strength == Strength.DIAG:
return self._ensure_positive_func(self.params)
elif self.cov_strength == Strength.FULL:
return self._parameterize_full(self.params)
elif self.par_strength == self.cov_strength:
if self.par_strength == Strength.SCALAR:
std = self.std(x)
diag_chol = th.ones(self.action_dim) * std
return self._ensure_positive_func(diag_chol)
elif self.par_strength == Strength.DIAG:
diag_chol = self.diag_chol(x)
return self._ensure_positive_func(diag_chol)
elif self.par_strength == Strength.FULL:
params = self.params(x)
return self._parameterize_full(params)
else:
if self.par_strength == Strength.SCALAR and self.cov_strength == Strength.DIAG:
factor = self.factor(x)
diag_chol = self._ensure_positive_func(
th.ones(self.action_dim) * self.param * factor[0])
return diag_chol
elif self.par_strength == Strength.DIAG and self.cov_strength == Strength.FULL:
pass
# TODO
elif self.par_strength == Strength.SCALAR and self.cov_strength == Strength.FULL:
# TODO
pass
raise Exception()
@property
def _full_params_len(self):
if self.par_type == ParametrizationType.CHOL:
return self._flat_chol_len
elif self.par_type == ParametrizationType.SPHERICAL_CHOL:
return self._flat_chol_len
raise Exception()
def _parameterize_full(self, params):
if self.par_type == ParametrizationType.CHOL:
return self._chol_from_flat(params)
elif self.par_type == ParametrizationType.SPHERICAL_CHOL:
return self._chol_from_flat_sphe_chol(params)
raise Exception()
def _chol_from_flat(self, flat_chol):
chol = fill_triangular(flat_chol).expand(self._flat_chol_len, -1, -1)
return self._ensure_diagonal_positive(chol)
def _chol_from_flat_sphe_chol(self, flat_sphe_chol):
pos_flat_sphe_chol = self._ensure_positive_func(flat_sphe_chol)
sphe_chol = fill_triangular(pos_flat_sphe_chol).expand(
self._flat_chol_len, -1, -1)
chol = self._chol_from_sphe_chol(sphe_chol)
return chol
def _chol_from_sphe_chol(self, sphe_chol):
# TODO: Test with batched data
# TODO: Make efficient more
# Note:
# We must should ensure:
# S[i,1] > 0 where i = 1..n
# S[i,j] e (0, pi) where i = 2..n, j = 2..i
# We already ensure S > 0 in _chol_from_flat_sphe_chol
# We ensure < pi by applying tanh*pi to all applicable elements
S = sphe_chol
n = self.action_dim
L = th.zeros_like(sphe_chol)
for i in range(n):
for j in range(i):
t = S[i, 1]
for k in range(1, j+1):
t *= th.sin(th.tanh(S[i, k])*pi)
if i != j:
t *= th.cos(th.tanh(S[i, j+1])*pi)
L[i, j] = t
return L
def _ensure_positive_func(self, x):
return self.enforce_positive_type.apply(x)
def _ensure_diagonal_positive(self, chol):
if len(chol.shape) == 1:
# If our chol is a vector (representing a diagonal chol)
return self._ensure_positive_func(chol)
return chol.tril(-1) + self._ensure_positive_func(chol.diagonal(dim1=-2,
dim2=-1)).diag_embed() + chol.triu(1)
def string(self):
# TODO
return '<CholNet />'
AnyDistribution = Union[SB3_Distribution, UniversalGaussianDistribution]