Testing the RayObserver
This commit is contained in:
parent
605a81c81c
commit
477a3c48b1
55
test.py
55
test.py
@ -7,54 +7,71 @@ from stable_baselines3 import SAC, PPO, A2C
|
||||
from stable_baselines3.common.evaluation import evaluate_policy
|
||||
|
||||
from sb3_trl.trl_pg import TRL_PG
|
||||
from subtrees.columbus import env
|
||||
from columbus import env
|
||||
|
||||
register(
|
||||
id='ColumbusTest3.1-v0',
|
||||
entry_point=env.ColumbusTest3_1,
|
||||
max_episode_steps=1000,
|
||||
id='ColumbusTestRay-v0',
|
||||
entry_point=env.ColumbusTestRay,
|
||||
max_episode_steps=30*60*5,
|
||||
)
|
||||
|
||||
def main():
|
||||
#env = gym.make("LunarLander-v2")
|
||||
env = gym.make("ColumbusTest3.1-v0")
|
||||
env = gym.make("ColumbusTestRay-v0")
|
||||
|
||||
ppo = PPO(
|
||||
"MlpPolicy",
|
||||
env,
|
||||
verbose=0,
|
||||
tensorboard_log="./logs_tb/test/",
|
||||
verbose=1,
|
||||
tensorboard_log="./logs_tb/test/ppo",
|
||||
use_sde=False,
|
||||
ent_coef=0.0001,
|
||||
learning_rate=0.0004
|
||||
)
|
||||
ppo_sde = PPO(
|
||||
"MlpPolicy",
|
||||
env,
|
||||
verbose=1,
|
||||
tensorboard_log="./logs_tb/test/ppo_sde/",
|
||||
use_sde=True,
|
||||
sde_sample_freq=30*20,
|
||||
ent_coef=0.000001,
|
||||
learning_rate=0.0003
|
||||
)
|
||||
a2c = A2C(
|
||||
"MlpPolicy",
|
||||
env,
|
||||
verbose=0,
|
||||
tensorboard_log="./logs_tb/test/",
|
||||
verbose=1,
|
||||
tensorboard_log="./logs_tb/test/a2c/",
|
||||
)
|
||||
trl = TRL_PG(
|
||||
"MlpPolicy",
|
||||
env,
|
||||
verbose=0,
|
||||
tensorboard_log="./logs_tb/test/",
|
||||
tensorboard_log="./logs_tb/test/trl_pg/",
|
||||
)
|
||||
|
||||
print('PPO:')
|
||||
testModel(ppo)
|
||||
print('A2C:')
|
||||
testModel(a2c)
|
||||
print('TRL_PG:')
|
||||
testModel(trl)
|
||||
#print('PPO:')
|
||||
#testModel(ppo, 500000, showRes = True, saveModel=True, n_eval_episodes=4)
|
||||
print('PPO_SDE:')
|
||||
testModel(ppo_sde, 100000, showRes = True, saveModel=True, n_eval_episodes=0)
|
||||
#print('A2C:')
|
||||
#testModel(a2c, showRes = True)
|
||||
#print('TRL_PG:')
|
||||
#testModel(trl)
|
||||
|
||||
|
||||
def testModel(model, timesteps=50000, showRes=False):
|
||||
def testModel(model, timesteps=100000, showRes=False, saveModel=False, n_eval_episodes=16):
|
||||
env = model.get_env()
|
||||
model.learn(timesteps)
|
||||
|
||||
mean_reward, std_reward = evaluate_policy(model, env, n_eval_episodes=16, deterministic=False)
|
||||
|
||||
if n_eval_episodes:
|
||||
mean_reward, std_reward = evaluate_policy(model, env, n_eval_episodes=n_eval_episodes, deterministic=False)
|
||||
print('Reward: '+str(round(mean_reward,3))+'±'+str(round(std_reward,2)))
|
||||
|
||||
if showRes:
|
||||
model.save("model")
|
||||
input('<ready?>')
|
||||
obs = env.reset()
|
||||
# Evaluate the agent
|
||||
episode_reward = 0
|
||||
|
Loading…
Reference in New Issue
Block a user