Implemented SDE

This commit is contained in:
Dominik Moritz Roth 2022-08-10 11:54:52 +02:00
parent 12e422aec7
commit 520dc98eb5
4 changed files with 61 additions and 13 deletions

View File

@ -160,8 +160,7 @@ class UniversalGaussianDistribution(SB3_Distribution):
self.distribution = None
self.gaussian_actions = None
if use_sde:
raise Exception('SDE is not yet implemented')
self.use_sde = use_sde
assert (self.par_type != ParametrizationType.NONE) == (
self.cov_strength == Strength.FULL), 'You should set an ParameterizationType iff the cov-strength is full'
@ -214,6 +213,9 @@ class UniversalGaussianDistribution(SB3_Distribution):
chol = CholNet(latent_dim, self.action_dim, std_init, self.par_strength,
self.cov_strength, self.par_type, self.enforce_positive_type, self.prob_squashing_type)
if self.use_sde:
self.sample_weights(self.action_dim)
return mean_actions, chol
def _sqrt_to_chol(self, cov_sqrt):
@ -246,7 +248,7 @@ class UniversalGaussianDistribution(SB3_Distribution):
self.distribution.cov_sqrt = cov_sqrt
return self
def proba_distribution(self, mean_actions: th.Tensor, chol: th.Tensor, latent_pi: nn.Module) -> "UniversalGaussianDistribution":
def proba_distribution(self, mean_actions: th.Tensor, chol: th.Tensor, latent_sde: nn.Module) -> "UniversalGaussianDistribution":
"""
Create the distribution given its parameters (mean, chol)
@ -254,7 +256,9 @@ class UniversalGaussianDistribution(SB3_Distribution):
:param chol:
:return:
"""
# TODO: latent_pi is for SDE, implement.
if self.use_sde:
self._latent_sde = latent_sde if self.learn_features else latent_sde.detach()
# TODO: Change variance of dist to include sde-spread
if self.cov_strength in [Strength.NONE, Strength.SCALAR, Strength.DIAG]:
self.distribution = Independent(Normal(mean_actions, chol), 1)
@ -300,6 +304,12 @@ class UniversalGaussianDistribution(SB3_Distribution):
self.gaussian_actions = sample
return self.prob_squashing_type.apply(sample)
def sample_sde(self) -> th.Tensor:
noise = self.get_noise(self._latent_sde)
actions = self.distribution.mean + noise
self.gaussian_actions = actions
return self.prob_squashing_type.apply(actions)
def mode(self) -> th.Tensor:
mode = self.distribution.mean
self.gaussian_actions = mode
@ -323,6 +333,28 @@ class UniversalGaussianDistribution(SB3_Distribution):
log_prob = self.log_prob(actions, self.gaussian_actions)
return actions, log_prob
def sample_weights(self, num_dims, batch_size=1):
self.weights_dist = Normal(th.zeros(num_dims), th.ones(num_dims))
# Reparametrization trick to pass gradients
self.exploration_mat = self.weights_dist.rsample()
# Pre-compute matrices in case of parallel exploration
self.exploration_matrices = self.weights_dist.rsample((batch_size,))
def get_noise(self, latent_sde: th.Tensor) -> th.Tensor:
latent_sde = latent_sde if self.learn_features else latent_sde.detach()
# # TODO: Good idea?
latent_sde = th.nn.functional.normalize(latent_sde, dim=-1)
chol = self.distribution.scale_tril
# Default case: only one exploration matrix
if len(latent_sde) == 1 or len(latent_sde) != len(self.exploration_matrices):
return th.mm(chol, th.mm(latent_sde, self.exploration_mat))
# Use batch matrix multiplication for efficient computation
# (batch_size, n_features) -> (batch_size, 1, n_features)
latent_sde = latent_sde.unsqueeze(dim=1)
# (batch_size, 1, n_actions)
noise = th.bmm(chol, th.bmm(latent_sde, self.exploration_matrices))
return noise.squeeze(dim=1)
class CholNet(nn.Module):
def __init__(self, latent_dim: int, action_dim: int, std_init: float, par_strength: Strength, cov_strength: Strength, par_type: ParametrizationType, enforce_positive_type: EnforcePositiveType, prob_squashing_type: ProbSquashingType):

View File

@ -35,6 +35,8 @@ from stable_baselines3.common.torch_layers import (
NatureCNN,
)
from stable_baselines3.common.preprocessing import get_action_dim
from metastable_baselines.projections.w2_projection_layer import WassersteinProjectionLayer
from ..distributions import UniversalGaussianDistribution, make_proba_distribution
@ -196,8 +198,15 @@ class ActorCriticPolicy(BasePolicy):
assert isinstance(
self.action_dist, StateDependentNoiseDistribution) or isinstance(
self.action_dist, UniversalGaussianDistribution), "reset_noise() is only available when using gSDE"
if isinstance(
self.action_dist, StateDependentNoiseDistribution):
self.action_dist.sample_weights(self.log_std, batch_size=n_envs)
if isinstance(
self.action_dist, UniversalGaussianDistribution):
self.action_dist.sample_weights(
get_action_dim(self.action_space), batch_size=n_envs)
def _build_mlp_extractor(self) -> None:
"""
Create the policy and value networks.

View File

@ -105,7 +105,7 @@ class PPO(GaussianRolloutCollectorAuxclass, OnPolicyAlgorithm):
target_kl: Optional[float] = None,
tensorboard_log: Optional[str] = None,
create_eval_env: bool = False,
policy_kwargs: Optional[Dict[str, Any]] = None,
policy_kwargs: Optional[Dict[str, Any]] = {},
verbose: int = 0,
seed: Optional[int] = None,
device: Union[th.device, str] = "auto",

View File

@ -157,16 +157,23 @@ class Actor(BasePolicy):
StateDependentNoiseDistribution), msg
return self.chol
def reset_noise(self, batch_size: int = 1) -> None:
def reset_noise(self, n_envs: int = 1) -> None:
"""
Sample new weights for the exploration matrix, when using gSDE.
Sample new weights for the exploration matrix.
:param batch_size:
:param n_envs:
"""
msg = "reset_noise() is only available when using gSDE"
assert isinstance(self.action_dist,
StateDependentNoiseDistribution), msg
self.action_dist.sample_weights(self.chol, batch_size=batch_size)
assert isinstance(
self.action_dist, StateDependentNoiseDistribution) or isinstance(
self.action_dist, UniversalGaussianDistribution), "reset_noise() is only available when using gSDE"
if isinstance(
self.action_dist, StateDependentNoiseDistribution):
self.action_dist.sample_weights(self.chol, batch_size=n_envs)
if isinstance(
self.action_dist, UniversalGaussianDistribution):
self.action_dist.sample_weights(
get_action_dim(self.action_space), batch_size=n_envs)
def get_action_dist_params(self, obs: th.Tensor) -> Tuple[th.Tensor, th.Tensor, Dict[str, th.Tensor]]:
"""