initial commit
This commit is contained in:
commit
63f755b4e0
2
__init__.py
Normal file
2
__init__.py
Normal file
@ -0,0 +1,2 @@
|
||||
from sb3_trl.policies import CnnPolicy, MlpPolicy, MultiInputPolicy
|
||||
from sb3_trl.trl import TRL
|
320
dtrl.py
Normal file
320
dtrl.py
Normal file
@ -0,0 +1,320 @@
|
||||
from typing import Any, Dict, List, Optional, Tuple, Type, Union
|
||||
|
||||
import gym
|
||||
import numpy as np
|
||||
import torch as th
|
||||
from torch.nn import functional as F
|
||||
|
||||
from stable_baselines3.common.buffers import ReplayBuffer
|
||||
from stable_baselines3.common.noise import ActionNoise
|
||||
from stable_baselines3.common.off_policy_algorithm import OffPolicyAlgorithm
|
||||
from stable_baselines3.common.policies import BasePolicy
|
||||
from stable_baselines3.common.type_aliases import GymEnv, MaybeCallback, Schedule
|
||||
from stable_baselines3.common.utils import polyak_update
|
||||
from stable_baselines3.sac.policies import CnnPolicy, MlpPolicy, MultiInputPolicy, SACPolicy
|
||||
|
||||
|
||||
class SAC(OffPolicyAlgorithm):
|
||||
"""
|
||||
Soft Actor-Critic (SAC)
|
||||
Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor,
|
||||
This implementation borrows code from original implementation (https://github.com/haarnoja/sac)
|
||||
from OpenAI Spinning Up (https://github.com/openai/spinningup), from the softlearning repo
|
||||
(https://github.com/rail-berkeley/softlearning/)
|
||||
and from Stable Baselines (https://github.com/hill-a/stable-baselines)
|
||||
Paper: https://arxiv.org/abs/1801.01290
|
||||
Introduction to SAC: https://spinningup.openai.com/en/latest/algorithms/sac.html
|
||||
|
||||
Note: we use double q target and not value target as discussed
|
||||
in https://github.com/hill-a/stable-baselines/issues/270
|
||||
|
||||
:param policy: The policy model to use (MlpPolicy, CnnPolicy, ...)
|
||||
:param env: The environment to learn from (if registered in Gym, can be str)
|
||||
:param learning_rate: learning rate for adam optimizer,
|
||||
the same learning rate will be used for all networks (Q-Values, Actor and Value function)
|
||||
it can be a function of the current progress remaining (from 1 to 0)
|
||||
:param buffer_size: size of the replay buffer
|
||||
:param learning_starts: how many steps of the model to collect transitions for before learning starts
|
||||
:param batch_size: Minibatch size for each gradient update
|
||||
:param tau: the soft update coefficient ("Polyak update", between 0 and 1)
|
||||
:param gamma: the discount factor
|
||||
:param train_freq: Update the model every ``train_freq`` steps. Alternatively pass a tuple of frequency and unit
|
||||
like ``(5, "step")`` or ``(2, "episode")``.
|
||||
:param gradient_steps: How many gradient steps to do after each rollout (see ``train_freq``)
|
||||
Set to ``-1`` means to do as many gradient steps as steps done in the environment
|
||||
during the rollout.
|
||||
:param action_noise: the action noise type (None by default), this can help
|
||||
for hard exploration problem. Cf common.noise for the different action noise type.
|
||||
:param replay_buffer_class: Replay buffer class to use (for instance ``HerReplayBuffer``).
|
||||
If ``None``, it will be automatically selected.
|
||||
:param replay_buffer_kwargs: Keyword arguments to pass to the replay buffer on creation.
|
||||
:param optimize_memory_usage: Enable a memory efficient variant of the replay buffer
|
||||
at a cost of more complexity.
|
||||
See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195
|
||||
:param ent_coef: Entropy regularization coefficient. (Equivalent to
|
||||
inverse of reward scale in the original SAC paper.) Controlling exploration/exploitation trade-off.
|
||||
Set it to 'auto' to learn it automatically (and 'auto_0.1' for using 0.1 as initial value)
|
||||
:param target_update_interval: update the target network every ``target_network_update_freq``
|
||||
gradient steps.
|
||||
:param target_entropy: target entropy when learning ``ent_coef`` (``ent_coef = 'auto'``)
|
||||
:param use_sde: Whether to use generalized State Dependent Exploration (gSDE)
|
||||
instead of action noise exploration (default: False)
|
||||
:param sde_sample_freq: Sample a new noise matrix every n steps when using gSDE
|
||||
Default: -1 (only sample at the beginning of the rollout)
|
||||
:param use_sde_at_warmup: Whether to use gSDE instead of uniform sampling
|
||||
during the warm up phase (before learning starts)
|
||||
:param create_eval_env: Whether to create a second environment that will be
|
||||
used for evaluating the agent periodically. (Only available when passing string for the environment)
|
||||
:param policy_kwargs: additional arguments to be passed to the policy on creation
|
||||
:param verbose: the verbosity level: 0 no output, 1 info, 2 debug
|
||||
:param seed: Seed for the pseudo random generators
|
||||
:param device: Device (cpu, cuda, ...) on which the code should be run.
|
||||
Setting it to auto, the code will be run on the GPU if possible.
|
||||
:param _init_setup_model: Whether or not to build the network at the creation of the instance
|
||||
"""
|
||||
|
||||
policy_aliases: Dict[str, Type[BasePolicy]] = {
|
||||
"MlpPolicy": MlpPolicy,
|
||||
"CnnPolicy": CnnPolicy,
|
||||
"MultiInputPolicy": MultiInputPolicy,
|
||||
}
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
policy: Union[str, Type[SACPolicy]],
|
||||
env: Union[GymEnv, str],
|
||||
learning_rate: Union[float, Schedule] = 3e-4,
|
||||
buffer_size: int = 1_000_000, # 1e6
|
||||
learning_starts: int = 100,
|
||||
batch_size: int = 256,
|
||||
tau: float = 0.005,
|
||||
gamma: float = 0.99,
|
||||
train_freq: Union[int, Tuple[int, str]] = 1,
|
||||
gradient_steps: int = 1,
|
||||
action_noise: Optional[ActionNoise] = None,
|
||||
replay_buffer_class: Optional[ReplayBuffer] = None,
|
||||
replay_buffer_kwargs: Optional[Dict[str, Any]] = None,
|
||||
optimize_memory_usage: bool = False,
|
||||
ent_coef: Union[str, float] = "auto",
|
||||
target_update_interval: int = 1,
|
||||
target_entropy: Union[str, float] = "auto",
|
||||
use_sde: bool = False,
|
||||
sde_sample_freq: int = -1,
|
||||
use_sde_at_warmup: bool = False,
|
||||
tensorboard_log: Optional[str] = None,
|
||||
create_eval_env: bool = False,
|
||||
policy_kwargs: Optional[Dict[str, Any]] = None,
|
||||
verbose: int = 0,
|
||||
seed: Optional[int] = None,
|
||||
device: Union[th.device, str] = "auto",
|
||||
_init_setup_model: bool = True,
|
||||
):
|
||||
|
||||
super().__init__(
|
||||
policy,
|
||||
env,
|
||||
learning_rate,
|
||||
buffer_size,
|
||||
learning_starts,
|
||||
batch_size,
|
||||
tau,
|
||||
gamma,
|
||||
train_freq,
|
||||
gradient_steps,
|
||||
action_noise,
|
||||
replay_buffer_class=replay_buffer_class,
|
||||
replay_buffer_kwargs=replay_buffer_kwargs,
|
||||
policy_kwargs=policy_kwargs,
|
||||
tensorboard_log=tensorboard_log,
|
||||
verbose=verbose,
|
||||
device=device,
|
||||
create_eval_env=create_eval_env,
|
||||
seed=seed,
|
||||
use_sde=use_sde,
|
||||
sde_sample_freq=sde_sample_freq,
|
||||
use_sde_at_warmup=use_sde_at_warmup,
|
||||
optimize_memory_usage=optimize_memory_usage,
|
||||
supported_action_spaces=(gym.spaces.Box),
|
||||
support_multi_env=True,
|
||||
)
|
||||
|
||||
self.target_entropy = target_entropy
|
||||
self.log_ent_coef = None # type: Optional[th.Tensor]
|
||||
# Entropy coefficient / Entropy temperature
|
||||
# Inverse of the reward scale
|
||||
self.ent_coef = ent_coef
|
||||
self.target_update_interval = target_update_interval
|
||||
self.ent_coef_optimizer = None
|
||||
|
||||
if _init_setup_model:
|
||||
self._setup_model()
|
||||
|
||||
def _setup_model(self) -> None:
|
||||
super()._setup_model()
|
||||
self._create_aliases()
|
||||
# Target entropy is used when learning the entropy coefficient
|
||||
if self.target_entropy == "auto":
|
||||
# automatically set target entropy if needed
|
||||
self.target_entropy = -np.prod(self.env.action_space.shape).astype(np.float32)
|
||||
else:
|
||||
# Force conversion
|
||||
# this will also throw an error for unexpected string
|
||||
self.target_entropy = float(self.target_entropy)
|
||||
|
||||
# The entropy coefficient or entropy can be learned automatically
|
||||
# see Automating Entropy Adjustment for Maximum Entropy RL section
|
||||
# of https://arxiv.org/abs/1812.05905
|
||||
if isinstance(self.ent_coef, str) and self.ent_coef.startswith("auto"):
|
||||
# Default initial value of ent_coef when learned
|
||||
init_value = 1.0
|
||||
if "_" in self.ent_coef:
|
||||
init_value = float(self.ent_coef.split("_")[1])
|
||||
assert init_value > 0.0, "The initial value of ent_coef must be greater than 0"
|
||||
|
||||
# Note: we optimize the log of the entropy coeff which is slightly different from the paper
|
||||
# as discussed in https://github.com/rail-berkeley/softlearning/issues/37
|
||||
self.log_ent_coef = th.log(th.ones(1, device=self.device) * init_value).requires_grad_(True)
|
||||
self.ent_coef_optimizer = th.optim.Adam([self.log_ent_coef], lr=self.lr_schedule(1))
|
||||
else:
|
||||
# Force conversion to float
|
||||
# this will throw an error if a malformed string (different from 'auto')
|
||||
# is passed
|
||||
self.ent_coef_tensor = th.tensor(float(self.ent_coef)).to(self.device)
|
||||
|
||||
def _create_aliases(self) -> None:
|
||||
self.actor = self.policy.actor
|
||||
self.critic = self.policy.critic
|
||||
self.critic_target = self.policy.critic_target
|
||||
|
||||
def train(self, gradient_steps: int, batch_size: int = 64) -> None:
|
||||
# Switch to train mode (this affects batch norm / dropout)
|
||||
self.policy.set_training_mode(True)
|
||||
# Update optimizers learning rate
|
||||
optimizers = [self.actor.optimizer, self.critic.optimizer]
|
||||
if self.ent_coef_optimizer is not None:
|
||||
optimizers += [self.ent_coef_optimizer]
|
||||
|
||||
# Update learning rate according to lr schedule
|
||||
self._update_learning_rate(optimizers)
|
||||
|
||||
ent_coef_losses, ent_coefs = [], []
|
||||
actor_losses, critic_losses = [], []
|
||||
|
||||
for gradient_step in range(gradient_steps):
|
||||
# Sample replay buffer
|
||||
replay_data = self.replay_buffer.sample(batch_size, env=self._vec_normalize_env)
|
||||
|
||||
# We need to sample because `log_std` may have changed between two gradient steps
|
||||
if self.use_sde:
|
||||
self.actor.reset_noise()
|
||||
|
||||
# Action by the current actor for the sampled state
|
||||
actions_pi, log_prob = self.actor.action_log_prob(replay_data.observations)
|
||||
log_prob = log_prob.reshape(-1, 1)
|
||||
|
||||
ent_coef_loss = None
|
||||
if self.ent_coef_optimizer is not None:
|
||||
# Important: detach the variable from the graph
|
||||
# so we don't change it with other losses
|
||||
# see https://github.com/rail-berkeley/softlearning/issues/60
|
||||
ent_coef = th.exp(self.log_ent_coef.detach())
|
||||
ent_coef_loss = -(self.log_ent_coef * (log_prob + self.target_entropy).detach()).mean()
|
||||
ent_coef_losses.append(ent_coef_loss.item())
|
||||
else:
|
||||
ent_coef = self.ent_coef_tensor
|
||||
|
||||
ent_coefs.append(ent_coef.item())
|
||||
|
||||
# Optimize entropy coefficient, also called
|
||||
# entropy temperature or alpha in the paper
|
||||
if ent_coef_loss is not None:
|
||||
self.ent_coef_optimizer.zero_grad()
|
||||
ent_coef_loss.backward()
|
||||
self.ent_coef_optimizer.step()
|
||||
|
||||
with th.no_grad():
|
||||
# Select action according to policy
|
||||
next_actions, next_log_prob = self.actor.action_log_prob(replay_data.next_observations)
|
||||
# Compute the next Q values: min over all critics targets
|
||||
next_q_values = th.cat(self.critic_target(replay_data.next_observations, next_actions), dim=1)
|
||||
next_q_values, _ = th.min(next_q_values, dim=1, keepdim=True)
|
||||
# add entropy term
|
||||
next_q_values = next_q_values - ent_coef * next_log_prob.reshape(-1, 1)
|
||||
# td error + entropy term
|
||||
target_q_values = replay_data.rewards + (1 - replay_data.dones) * self.gamma * next_q_values
|
||||
|
||||
# Get current Q-values estimates for each critic network
|
||||
# using action from the replay buffer
|
||||
current_q_values = self.critic(replay_data.observations, replay_data.actions)
|
||||
|
||||
# Compute critic loss
|
||||
critic_loss = 0.5 * sum(F.mse_loss(current_q, target_q_values) for current_q in current_q_values)
|
||||
critic_losses.append(critic_loss.item())
|
||||
|
||||
# Optimize the critic
|
||||
self.critic.optimizer.zero_grad()
|
||||
critic_loss.backward()
|
||||
self.critic.optimizer.step()
|
||||
|
||||
# Compute actor loss
|
||||
# Alternative: actor_loss = th.mean(log_prob - qf1_pi)
|
||||
# Mean over all critic networks
|
||||
q_values_pi = th.cat(self.critic(replay_data.observations, actions_pi), dim=1)
|
||||
min_qf_pi, _ = th.min(q_values_pi, dim=1, keepdim=True)
|
||||
actor_loss = (ent_coef * log_prob - min_qf_pi).mean()
|
||||
actor_losses.append(actor_loss.item())
|
||||
|
||||
# Optimize the actor
|
||||
self.actor.optimizer.zero_grad()
|
||||
actor_loss.backward()
|
||||
self.actor.optimizer.step()
|
||||
|
||||
# Update target networks
|
||||
if gradient_step % self.target_update_interval == 0:
|
||||
polyak_update(self.critic.parameters(), self.critic_target.parameters(), self.tau)
|
||||
|
||||
self._n_updates += gradient_steps
|
||||
|
||||
self.logger.record("train/n_updates", self._n_updates, exclude="tensorboard")
|
||||
self.logger.record("train/ent_coef", np.mean(ent_coefs))
|
||||
self.logger.record("train/actor_loss", np.mean(actor_losses))
|
||||
self.logger.record("train/critic_loss", np.mean(critic_losses))
|
||||
if len(ent_coef_losses) > 0:
|
||||
self.logger.record("train/ent_coef_loss", np.mean(ent_coef_losses))
|
||||
|
||||
def learn(
|
||||
self,
|
||||
total_timesteps: int,
|
||||
callback: MaybeCallback = None,
|
||||
log_interval: int = 4,
|
||||
eval_env: Optional[GymEnv] = None,
|
||||
eval_freq: int = -1,
|
||||
n_eval_episodes: int = 5,
|
||||
tb_log_name: str = "SAC",
|
||||
eval_log_path: Optional[str] = None,
|
||||
reset_num_timesteps: bool = True,
|
||||
) -> OffPolicyAlgorithm:
|
||||
|
||||
return super().learn(
|
||||
total_timesteps=total_timesteps,
|
||||
callback=callback,
|
||||
log_interval=log_interval,
|
||||
eval_env=eval_env,
|
||||
eval_freq=eval_freq,
|
||||
n_eval_episodes=n_eval_episodes,
|
||||
tb_log_name=tb_log_name,
|
||||
eval_log_path=eval_log_path,
|
||||
reset_num_timesteps=reset_num_timesteps,
|
||||
)
|
||||
|
||||
def _excluded_save_params(self) -> List[str]:
|
||||
return super()._excluded_save_params() + ["actor", "critic", "critic_target"]
|
||||
|
||||
def _get_torch_save_params(self) -> Tuple[List[str], List[str]]:
|
||||
state_dicts = ["policy", "actor.optimizer", "critic.optimizer"]
|
||||
if self.ent_coef_optimizer is not None:
|
||||
saved_pytorch_variables = ["log_ent_coef"]
|
||||
state_dicts.append("ent_coef_optimizer")
|
||||
else:
|
||||
saved_pytorch_variables = ["ent_coef_tensor"]
|
||||
return state_dicts, saved_pytorch_variables
|
516
policies.py
Normal file
516
policies.py
Normal file
@ -0,0 +1,516 @@
|
||||
import warnings
|
||||
from typing import Any, Dict, List, Optional, Tuple, Type, Union
|
||||
|
||||
import gym
|
||||
import torch as th
|
||||
from torch import nn
|
||||
|
||||
from stable_baselines3.common.distributions import SquashedDiagGaussianDistribution, StateDependentNoiseDistribution
|
||||
from stable_baselines3.common.policies import BasePolicy, ContinuousCritic
|
||||
from stable_baselines3.common.preprocessing import get_action_dim
|
||||
from stable_baselines3.common.torch_layers import (
|
||||
BaseFeaturesExtractor,
|
||||
CombinedExtractor,
|
||||
FlattenExtractor,
|
||||
NatureCNN,
|
||||
create_mlp,
|
||||
get_actor_critic_arch,
|
||||
)
|
||||
from stable_baselines3.common.type_aliases import Schedule
|
||||
|
||||
# CAP the standard deviation of the actor
|
||||
LOG_STD_MAX = 2
|
||||
LOG_STD_MIN = -20
|
||||
|
||||
|
||||
class Actor(BasePolicy):
|
||||
"""
|
||||
Actor network (policy) for SAC.
|
||||
|
||||
:param observation_space: Obervation space
|
||||
:param action_space: Action space
|
||||
:param net_arch: Network architecture
|
||||
:param features_extractor: Network to extract features
|
||||
(a CNN when using images, a nn.Flatten() layer otherwise)
|
||||
:param features_dim: Number of features
|
||||
:param activation_fn: Activation function
|
||||
:param use_sde: Whether to use State Dependent Exploration or not
|
||||
:param log_std_init: Initial value for the log standard deviation
|
||||
:param full_std: Whether to use (n_features x n_actions) parameters
|
||||
for the std instead of only (n_features,) when using gSDE.
|
||||
:param sde_net_arch: Network architecture for extracting features
|
||||
when using gSDE. If None, the latent features from the policy will be used.
|
||||
Pass an empty list to use the states as features.
|
||||
:param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure
|
||||
a positive standard deviation (cf paper). It allows to keep variance
|
||||
above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.
|
||||
:param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.
|
||||
:param normalize_images: Whether to normalize images or not,
|
||||
dividing by 255.0 (True by default)
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
observation_space: gym.spaces.Space,
|
||||
action_space: gym.spaces.Space,
|
||||
net_arch: List[int],
|
||||
features_extractor: nn.Module,
|
||||
features_dim: int,
|
||||
activation_fn: Type[nn.Module] = nn.ReLU,
|
||||
use_sde: bool = False,
|
||||
log_std_init: float = -3,
|
||||
full_std: bool = True,
|
||||
sde_net_arch: Optional[List[int]] = None,
|
||||
use_expln: bool = False,
|
||||
clip_mean: float = 2.0,
|
||||
normalize_images: bool = True,
|
||||
):
|
||||
super().__init__(
|
||||
observation_space,
|
||||
action_space,
|
||||
features_extractor=features_extractor,
|
||||
normalize_images=normalize_images,
|
||||
squash_output=True,
|
||||
)
|
||||
|
||||
# Save arguments to re-create object at loading
|
||||
self.use_sde = use_sde
|
||||
self.sde_features_extractor = None
|
||||
self.net_arch = net_arch
|
||||
self.features_dim = features_dim
|
||||
self.activation_fn = activation_fn
|
||||
self.log_std_init = log_std_init
|
||||
self.sde_net_arch = sde_net_arch
|
||||
self.use_expln = use_expln
|
||||
self.full_std = full_std
|
||||
self.clip_mean = clip_mean
|
||||
|
||||
if sde_net_arch is not None:
|
||||
warnings.warn("sde_net_arch is deprecated and will be removed in SB3 v2.4.0.", DeprecationWarning)
|
||||
|
||||
action_dim = get_action_dim(self.action_space)
|
||||
latent_pi_net = create_mlp(features_dim, -1, net_arch, activation_fn)
|
||||
self.latent_pi = nn.Sequential(*latent_pi_net)
|
||||
last_layer_dim = net_arch[-1] if len(net_arch) > 0 else features_dim
|
||||
|
||||
if self.use_sde:
|
||||
self.action_dist = StateDependentNoiseDistribution(
|
||||
action_dim, full_std=full_std, use_expln=use_expln, learn_features=True, squash_output=True
|
||||
)
|
||||
self.mu, self.log_std = self.action_dist.proba_distribution_net(
|
||||
latent_dim=last_layer_dim, latent_sde_dim=last_layer_dim, log_std_init=log_std_init
|
||||
)
|
||||
# Avoid numerical issues by limiting the mean of the Gaussian
|
||||
# to be in [-clip_mean, clip_mean]
|
||||
if clip_mean > 0.0:
|
||||
self.mu = nn.Sequential(self.mu, nn.Hardtanh(min_val=-clip_mean, max_val=clip_mean))
|
||||
else:
|
||||
self.action_dist = SquashedDiagGaussianDistribution(action_dim)
|
||||
self.mu = nn.Linear(last_layer_dim, action_dim)
|
||||
self.log_std = nn.Linear(last_layer_dim, action_dim)
|
||||
|
||||
def _get_constructor_parameters(self) -> Dict[str, Any]:
|
||||
data = super()._get_constructor_parameters()
|
||||
|
||||
data.update(
|
||||
dict(
|
||||
net_arch=self.net_arch,
|
||||
features_dim=self.features_dim,
|
||||
activation_fn=self.activation_fn,
|
||||
use_sde=self.use_sde,
|
||||
log_std_init=self.log_std_init,
|
||||
full_std=self.full_std,
|
||||
use_expln=self.use_expln,
|
||||
features_extractor=self.features_extractor,
|
||||
clip_mean=self.clip_mean,
|
||||
)
|
||||
)
|
||||
return data
|
||||
|
||||
def get_std(self) -> th.Tensor:
|
||||
"""
|
||||
Retrieve the standard deviation of the action distribution.
|
||||
Only useful when using gSDE.
|
||||
It corresponds to ``th.exp(log_std)`` in the normal case,
|
||||
but is slightly different when using ``expln`` function
|
||||
(cf StateDependentNoiseDistribution doc).
|
||||
|
||||
:return:
|
||||
"""
|
||||
msg = "get_std() is only available when using gSDE"
|
||||
assert isinstance(self.action_dist, StateDependentNoiseDistribution), msg
|
||||
return self.action_dist.get_std(self.log_std)
|
||||
|
||||
def reset_noise(self, batch_size: int = 1) -> None:
|
||||
"""
|
||||
Sample new weights for the exploration matrix, when using gSDE.
|
||||
|
||||
:param batch_size:
|
||||
"""
|
||||
msg = "reset_noise() is only available when using gSDE"
|
||||
assert isinstance(self.action_dist, StateDependentNoiseDistribution), msg
|
||||
self.action_dist.sample_weights(self.log_std, batch_size=batch_size)
|
||||
|
||||
def get_action_dist_params(self, obs: th.Tensor) -> Tuple[th.Tensor, th.Tensor, Dict[str, th.Tensor]]:
|
||||
"""
|
||||
Get the parameters for the action distribution.
|
||||
|
||||
:param obs:
|
||||
:return:
|
||||
Mean, standard deviation and optional keyword arguments.
|
||||
"""
|
||||
features = self.extract_features(obs)
|
||||
latent_pi = self.latent_pi(features)
|
||||
mean_actions = self.mu(latent_pi)
|
||||
|
||||
if self.use_sde:
|
||||
return mean_actions, self.log_std, dict(latent_sde=latent_pi)
|
||||
# Unstructured exploration (Original implementation)
|
||||
log_std = self.log_std(latent_pi)
|
||||
# Original Implementation to cap the standard deviation
|
||||
log_std = th.clamp(log_std, LOG_STD_MIN, LOG_STD_MAX)
|
||||
return mean_actions, log_std, {}
|
||||
|
||||
def forward(self, obs: th.Tensor, deterministic: bool = False) -> th.Tensor:
|
||||
mean_actions, log_std, kwargs = self.get_action_dist_params(obs)
|
||||
# Note: the action is squashed
|
||||
return self.action_dist.actions_from_params(mean_actions, log_std, deterministic=deterministic, **kwargs)
|
||||
|
||||
def action_log_prob(self, obs: th.Tensor) -> Tuple[th.Tensor, th.Tensor]:
|
||||
mean_actions, log_std, kwargs = self.get_action_dist_params(obs)
|
||||
# return action and associated log prob
|
||||
return self.action_dist.log_prob_from_params(mean_actions, log_std, **kwargs)
|
||||
|
||||
def _predict(self, observation: th.Tensor, deterministic: bool = False) -> th.Tensor:
|
||||
return self(observation, deterministic)
|
||||
|
||||
|
||||
class SACPolicy(BasePolicy):
|
||||
"""
|
||||
Policy class (with both actor and critic) for SAC.
|
||||
|
||||
:param observation_space: Observation space
|
||||
:param action_space: Action space
|
||||
:param lr_schedule: Learning rate schedule (could be constant)
|
||||
:param net_arch: The specification of the policy and value networks.
|
||||
:param activation_fn: Activation function
|
||||
:param use_sde: Whether to use State Dependent Exploration or not
|
||||
:param log_std_init: Initial value for the log standard deviation
|
||||
:param sde_net_arch: Network architecture for extracting features
|
||||
when using gSDE. If None, the latent features from the policy will be used.
|
||||
Pass an empty list to use the states as features.
|
||||
:param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure
|
||||
a positive standard deviation (cf paper). It allows to keep variance
|
||||
above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.
|
||||
:param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.
|
||||
:param features_extractor_class: Features extractor to use.
|
||||
:param features_extractor_kwargs: Keyword arguments
|
||||
to pass to the features extractor.
|
||||
:param normalize_images: Whether to normalize images or not,
|
||||
dividing by 255.0 (True by default)
|
||||
:param optimizer_class: The optimizer to use,
|
||||
``th.optim.Adam`` by default
|
||||
:param optimizer_kwargs: Additional keyword arguments,
|
||||
excluding the learning rate, to pass to the optimizer
|
||||
:param n_critics: Number of critic networks to create.
|
||||
:param share_features_extractor: Whether to share or not the features extractor
|
||||
between the actor and the critic (this saves computation time)
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
observation_space: gym.spaces.Space,
|
||||
action_space: gym.spaces.Space,
|
||||
lr_schedule: Schedule,
|
||||
net_arch: Optional[Union[List[int], Dict[str, List[int]]]] = None,
|
||||
activation_fn: Type[nn.Module] = nn.ReLU,
|
||||
use_sde: bool = False,
|
||||
log_std_init: float = -3,
|
||||
sde_net_arch: Optional[List[int]] = None,
|
||||
use_expln: bool = False,
|
||||
clip_mean: float = 2.0,
|
||||
features_extractor_class: Type[BaseFeaturesExtractor] = FlattenExtractor,
|
||||
features_extractor_kwargs: Optional[Dict[str, Any]] = None,
|
||||
normalize_images: bool = True,
|
||||
optimizer_class: Type[th.optim.Optimizer] = th.optim.Adam,
|
||||
optimizer_kwargs: Optional[Dict[str, Any]] = None,
|
||||
n_critics: int = 2,
|
||||
share_features_extractor: bool = True,
|
||||
):
|
||||
super().__init__(
|
||||
observation_space,
|
||||
action_space,
|
||||
features_extractor_class,
|
||||
features_extractor_kwargs,
|
||||
optimizer_class=optimizer_class,
|
||||
optimizer_kwargs=optimizer_kwargs,
|
||||
squash_output=True,
|
||||
)
|
||||
|
||||
if net_arch is None:
|
||||
if features_extractor_class == NatureCNN:
|
||||
net_arch = []
|
||||
else:
|
||||
net_arch = [256, 256]
|
||||
|
||||
actor_arch, critic_arch = get_actor_critic_arch(net_arch)
|
||||
|
||||
self.net_arch = net_arch
|
||||
self.activation_fn = activation_fn
|
||||
self.net_args = {
|
||||
"observation_space": self.observation_space,
|
||||
"action_space": self.action_space,
|
||||
"net_arch": actor_arch,
|
||||
"activation_fn": self.activation_fn,
|
||||
"normalize_images": normalize_images,
|
||||
}
|
||||
self.actor_kwargs = self.net_args.copy()
|
||||
|
||||
if sde_net_arch is not None:
|
||||
warnings.warn("sde_net_arch is deprecated and will be removed in SB3 v2.4.0.", DeprecationWarning)
|
||||
|
||||
sde_kwargs = {
|
||||
"use_sde": use_sde,
|
||||
"log_std_init": log_std_init,
|
||||
"use_expln": use_expln,
|
||||
"clip_mean": clip_mean,
|
||||
}
|
||||
self.actor_kwargs.update(sde_kwargs)
|
||||
self.critic_kwargs = self.net_args.copy()
|
||||
self.critic_kwargs.update(
|
||||
{
|
||||
"n_critics": n_critics,
|
||||
"net_arch": critic_arch,
|
||||
"share_features_extractor": share_features_extractor,
|
||||
}
|
||||
)
|
||||
|
||||
self.actor, self.actor_target = None, None
|
||||
self.critic, self.critic_target = None, None
|
||||
self.share_features_extractor = share_features_extractor
|
||||
|
||||
self._build(lr_schedule)
|
||||
|
||||
def _build(self, lr_schedule: Schedule) -> None:
|
||||
self.actor = self.make_actor()
|
||||
self.actor.optimizer = self.optimizer_class(self.actor.parameters(), lr=lr_schedule(1), **self.optimizer_kwargs)
|
||||
|
||||
if self.share_features_extractor:
|
||||
self.critic = self.make_critic(features_extractor=self.actor.features_extractor)
|
||||
# Do not optimize the shared features extractor with the critic loss
|
||||
# otherwise, there are gradient computation issues
|
||||
critic_parameters = [param for name, param in self.critic.named_parameters() if "features_extractor" not in name]
|
||||
else:
|
||||
# Create a separate features extractor for the critic
|
||||
# this requires more memory and computation
|
||||
self.critic = self.make_critic(features_extractor=None)
|
||||
critic_parameters = self.critic.parameters()
|
||||
|
||||
# Critic target should not share the features extractor with critic
|
||||
self.critic_target = self.make_critic(features_extractor=None)
|
||||
self.critic_target.load_state_dict(self.critic.state_dict())
|
||||
|
||||
self.critic.optimizer = self.optimizer_class(critic_parameters, lr=lr_schedule(1), **self.optimizer_kwargs)
|
||||
|
||||
# Target networks should always be in eval mode
|
||||
self.critic_target.set_training_mode(False)
|
||||
|
||||
def _get_constructor_parameters(self) -> Dict[str, Any]:
|
||||
data = super()._get_constructor_parameters()
|
||||
|
||||
data.update(
|
||||
dict(
|
||||
net_arch=self.net_arch,
|
||||
activation_fn=self.net_args["activation_fn"],
|
||||
use_sde=self.actor_kwargs["use_sde"],
|
||||
log_std_init=self.actor_kwargs["log_std_init"],
|
||||
use_expln=self.actor_kwargs["use_expln"],
|
||||
clip_mean=self.actor_kwargs["clip_mean"],
|
||||
n_critics=self.critic_kwargs["n_critics"],
|
||||
lr_schedule=self._dummy_schedule, # dummy lr schedule, not needed for loading policy alone
|
||||
optimizer_class=self.optimizer_class,
|
||||
optimizer_kwargs=self.optimizer_kwargs,
|
||||
features_extractor_class=self.features_extractor_class,
|
||||
features_extractor_kwargs=self.features_extractor_kwargs,
|
||||
)
|
||||
)
|
||||
return data
|
||||
|
||||
def reset_noise(self, batch_size: int = 1) -> None:
|
||||
"""
|
||||
Sample new weights for the exploration matrix, when using gSDE.
|
||||
|
||||
:param batch_size:
|
||||
"""
|
||||
self.actor.reset_noise(batch_size=batch_size)
|
||||
|
||||
def make_actor(self, features_extractor: Optional[BaseFeaturesExtractor] = None) -> Actor:
|
||||
actor_kwargs = self._update_features_extractor(self.actor_kwargs, features_extractor)
|
||||
return Actor(**actor_kwargs).to(self.device)
|
||||
|
||||
def make_critic(self, features_extractor: Optional[BaseFeaturesExtractor] = None) -> ContinuousCritic:
|
||||
critic_kwargs = self._update_features_extractor(self.critic_kwargs, features_extractor)
|
||||
return ContinuousCritic(**critic_kwargs).to(self.device)
|
||||
|
||||
def forward(self, obs: th.Tensor, deterministic: bool = False) -> th.Tensor:
|
||||
return self._predict(obs, deterministic=deterministic)
|
||||
|
||||
def _predict(self, observation: th.Tensor, deterministic: bool = False) -> th.Tensor:
|
||||
return self.actor(observation, deterministic)
|
||||
|
||||
def set_training_mode(self, mode: bool) -> None:
|
||||
"""
|
||||
Put the policy in either training or evaluation mode.
|
||||
|
||||
This affects certain modules, such as batch normalisation and dropout.
|
||||
|
||||
:param mode: if true, set to training mode, else set to evaluation mode
|
||||
"""
|
||||
self.actor.set_training_mode(mode)
|
||||
self.critic.set_training_mode(mode)
|
||||
self.training = mode
|
||||
|
||||
|
||||
MlpPolicy = SACPolicy
|
||||
|
||||
|
||||
class CnnPolicy(SACPolicy):
|
||||
"""
|
||||
Policy class (with both actor and critic) for SAC.
|
||||
|
||||
:param observation_space: Observation space
|
||||
:param action_space: Action space
|
||||
:param lr_schedule: Learning rate schedule (could be constant)
|
||||
:param net_arch: The specification of the policy and value networks.
|
||||
:param activation_fn: Activation function
|
||||
:param use_sde: Whether to use State Dependent Exploration or not
|
||||
:param log_std_init: Initial value for the log standard deviation
|
||||
:param sde_net_arch: Network architecture for extracting features
|
||||
when using gSDE. If None, the latent features from the policy will be used.
|
||||
Pass an empty list to use the states as features.
|
||||
:param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure
|
||||
a positive standard deviation (cf paper). It allows to keep variance
|
||||
above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.
|
||||
:param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.
|
||||
:param features_extractor_class: Features extractor to use.
|
||||
:param normalize_images: Whether to normalize images or not,
|
||||
dividing by 255.0 (True by default)
|
||||
:param optimizer_class: The optimizer to use,
|
||||
``th.optim.Adam`` by default
|
||||
:param optimizer_kwargs: Additional keyword arguments,
|
||||
excluding the learning rate, to pass to the optimizer
|
||||
:param n_critics: Number of critic networks to create.
|
||||
:param share_features_extractor: Whether to share or not the features extractor
|
||||
between the actor and the critic (this saves computation time)
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
observation_space: gym.spaces.Space,
|
||||
action_space: gym.spaces.Space,
|
||||
lr_schedule: Schedule,
|
||||
net_arch: Optional[Union[List[int], Dict[str, List[int]]]] = None,
|
||||
activation_fn: Type[nn.Module] = nn.ReLU,
|
||||
use_sde: bool = False,
|
||||
log_std_init: float = -3,
|
||||
sde_net_arch: Optional[List[int]] = None,
|
||||
use_expln: bool = False,
|
||||
clip_mean: float = 2.0,
|
||||
features_extractor_class: Type[BaseFeaturesExtractor] = NatureCNN,
|
||||
features_extractor_kwargs: Optional[Dict[str, Any]] = None,
|
||||
normalize_images: bool = True,
|
||||
optimizer_class: Type[th.optim.Optimizer] = th.optim.Adam,
|
||||
optimizer_kwargs: Optional[Dict[str, Any]] = None,
|
||||
n_critics: int = 2,
|
||||
share_features_extractor: bool = True,
|
||||
):
|
||||
super().__init__(
|
||||
observation_space,
|
||||
action_space,
|
||||
lr_schedule,
|
||||
net_arch,
|
||||
activation_fn,
|
||||
use_sde,
|
||||
log_std_init,
|
||||
sde_net_arch,
|
||||
use_expln,
|
||||
clip_mean,
|
||||
features_extractor_class,
|
||||
features_extractor_kwargs,
|
||||
normalize_images,
|
||||
optimizer_class,
|
||||
optimizer_kwargs,
|
||||
n_critics,
|
||||
share_features_extractor,
|
||||
)
|
||||
|
||||
|
||||
class MultiInputPolicy(SACPolicy):
|
||||
"""
|
||||
Policy class (with both actor and critic) for SAC.
|
||||
|
||||
:param observation_space: Observation space
|
||||
:param action_space: Action space
|
||||
:param lr_schedule: Learning rate schedule (could be constant)
|
||||
:param net_arch: The specification of the policy and value networks.
|
||||
:param activation_fn: Activation function
|
||||
:param use_sde: Whether to use State Dependent Exploration or not
|
||||
:param log_std_init: Initial value for the log standard deviation
|
||||
:param sde_net_arch: Network architecture for extracting features
|
||||
when using gSDE. If None, the latent features from the policy will be used.
|
||||
Pass an empty list to use the states as features.
|
||||
:param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure
|
||||
a positive standard deviation (cf paper). It allows to keep variance
|
||||
above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.
|
||||
:param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.
|
||||
:param features_extractor_class: Features extractor to use.
|
||||
:param normalize_images: Whether to normalize images or not,
|
||||
dividing by 255.0 (True by default)
|
||||
:param optimizer_class: The optimizer to use,
|
||||
``th.optim.Adam`` by default
|
||||
:param optimizer_kwargs: Additional keyword arguments,
|
||||
excluding the learning rate, to pass to the optimizer
|
||||
:param n_critics: Number of critic networks to create.
|
||||
:param share_features_extractor: Whether to share or not the features extractor
|
||||
between the actor and the critic (this saves computation time)
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
observation_space: gym.spaces.Space,
|
||||
action_space: gym.spaces.Space,
|
||||
lr_schedule: Schedule,
|
||||
net_arch: Optional[Union[List[int], Dict[str, List[int]]]] = None,
|
||||
activation_fn: Type[nn.Module] = nn.ReLU,
|
||||
use_sde: bool = False,
|
||||
log_std_init: float = -3,
|
||||
sde_net_arch: Optional[List[int]] = None,
|
||||
use_expln: bool = False,
|
||||
clip_mean: float = 2.0,
|
||||
features_extractor_class: Type[BaseFeaturesExtractor] = CombinedExtractor,
|
||||
features_extractor_kwargs: Optional[Dict[str, Any]] = None,
|
||||
normalize_images: bool = True,
|
||||
optimizer_class: Type[th.optim.Optimizer] = th.optim.Adam,
|
||||
optimizer_kwargs: Optional[Dict[str, Any]] = None,
|
||||
n_critics: int = 2,
|
||||
share_features_extractor: bool = True,
|
||||
):
|
||||
super().__init__(
|
||||
observation_space,
|
||||
action_space,
|
||||
lr_schedule,
|
||||
net_arch,
|
||||
activation_fn,
|
||||
use_sde,
|
||||
log_std_init,
|
||||
sde_net_arch,
|
||||
use_expln,
|
||||
clip_mean,
|
||||
features_extractor_class,
|
||||
features_extractor_kwargs,
|
||||
normalize_images,
|
||||
optimizer_class,
|
||||
optimizer_kwargs,
|
||||
n_critics,
|
||||
share_features_extractor,
|
||||
)
|
Loading…
Reference in New Issue
Block a user