From 866f863d7005c81d720f3368a9af43bf2fd12e79 Mon Sep 17 00:00:00 2001 From: Dominik Roth Date: Sat, 25 Jun 2022 14:57:27 +0200 Subject: [PATCH] overriding collect_rollouts --- sb3_trl/trl_pg/trl_pg.py | 103 +++++++++++++++++++++++++++++++++++++++ 1 file changed, 103 insertions(+) diff --git a/sb3_trl/trl_pg/trl_pg.py b/sb3_trl/trl_pg/trl_pg.py index 99932e3..f26bea3 100644 --- a/sb3_trl/trl_pg/trl_pg.py +++ b/sb3_trl/trl_pg/trl_pg.py @@ -10,6 +10,10 @@ from stable_baselines3.common.on_policy_algorithm import OnPolicyAlgorithm from stable_baselines3.common.policies import ActorCriticCnnPolicy, ActorCriticPolicy, BasePolicy, MultiInputActorCriticPolicy from stable_baselines3.common.type_aliases import GymEnv, MaybeCallback, Schedule from stable_baselines3.common.utils import explained_variance, get_schedule_fn +from stable_baselines3.common.vec_env import VecEnv +from stable_baselines3.common.buffers import RolloutBuffer +from stable_baselines3.common.callbacks import BaseCallback +from stable_baselines3.common.utils import obs_as_tensor class TRL_PG(OnPolicyAlgorithm): @@ -379,3 +383,102 @@ class TRL_PG(OnPolicyAlgorithm): eval_log_path=eval_log_path, reset_num_timesteps=reset_num_timesteps, ) + + # This is new compared to PPO. + # TRL requires us to also save the original mean and std in our rollouts + def collect_rollouts( + self, + env: VecEnv, + callback: BaseCallback, + rollout_buffer: RolloutBuffer, + n_rollout_steps: int, + ) -> bool: + """ + Collect experiences using the current policy and fill a ``RolloutBuffer``. + The term rollout here refers to the model-free notion and should not + be used with the concept of rollout used in model-based RL or planning. + :param env: The training environment + :param callback: Callback that will be called at each step + (and at the beginning and end of the rollout) + :param rollout_buffer: Buffer to fill with rollouts + :param n_steps: Number of experiences to collect per environment + :return: True if function returned with at least `n_rollout_steps` + collected, False if callback terminated rollout prematurely. + """ + assert self._last_obs is not None, "No previous observation was provided" + # Switch to eval mode (this affects batch norm / dropout) + self.policy.set_training_mode(False) + + n_steps = 0 + rollout_buffer.reset() + # Sample new weights for the state dependent exploration + if self.use_sde: + self.policy.reset_noise(env.num_envs) + + callback.on_rollout_start() + + while n_steps < n_rollout_steps: + if self.use_sde and self.sde_sample_freq > 0 and n_steps % self.sde_sample_freq == 0: + # Sample a new noise matrix + self.policy.reset_noise(env.num_envs) + + with th.no_grad(): + # Convert to pytorch tensor or to TensorDict + obs_tensor = obs_as_tensor(self._last_obs, self.device) + actions, values, log_probs = self.policy(obs_tensor) + actions = actions.cpu().numpy() + + # Rescale and perform action + clipped_actions = actions + # Clip the actions to avoid out of bound error + if isinstance(self.action_space, gym.spaces.Box): + clipped_actions = np.clip( + actions, self.action_space.low, self.action_space.high) + + new_obs, rewards, dones, infos = env.step(clipped_actions) + + self.num_timesteps += env.num_envs + + # Give access to local variables + callback.update_locals(locals()) + if callback.on_step() is False: + return False + + self._update_info_buffer(infos) + n_steps += 1 + + if isinstance(self.action_space, gym.spaces.Discrete): + # Reshape in case of discrete action + actions = actions.reshape(-1, 1) + + # Handle timeout by bootstraping with value function + # see GitHub issue #633 + for idx, done in enumerate(dones): + if ( + done + and infos[idx].get("terminal_observation") is not None + and infos[idx].get("TimeLimit.truncated", False) + ): + terminal_obs = self.policy.obs_to_tensor( + infos[idx]["terminal_observation"])[0] + with th.no_grad(): + terminal_value = self.policy.predict_values(terminal_obs)[ + 0] + rewards[idx] += self.gamma * terminal_value + + rollout_buffer.add(self._last_obs, actions, rewards, + self._last_episode_starts, values, log_probs) + self._last_obs = new_obs + self._last_episode_starts = dones + + with th.no_grad(): + # Compute value for the last timestep + values = self.policy.predict_values( + obs_as_tensor(new_obs, self.device)) + + rollout_buffer.compute_returns_and_advantage( + last_values=values, dones=dones) + + callback.on_rollout_end() + + return True