Split PG/SAC code
This commit is contained in:
parent
63f755b4e0
commit
9a99962176
@ -1,2 +0,0 @@
|
|||||||
from sb3_trl.policies import CnnPolicy, MlpPolicy, MultiInputPolicy
|
|
||||||
from sb3_trl.trl import TRL
|
|
2
trl_pg/__init__.py
Normal file
2
trl_pg/__init__.py
Normal file
@ -0,0 +1,2 @@
|
|||||||
|
from sb3.trl_pg.policies import CnnPolicy, MlpPolicy, MultiInputPolicy
|
||||||
|
from sb3.trl_pg.trl_pg import TRL_PG
|
7
trl_pg/policies.py
Normal file
7
trl_pg/policies.py
Normal file
@ -0,0 +1,7 @@
|
|||||||
|
# This file is here just to define MlpPolicy/CnnPolicy
|
||||||
|
# that work for TRL_PG
|
||||||
|
from stable_baselines3.common.policies import ActorCriticCnnPolicy, ActorCriticPolicy, MultiInputActorCriticPolicy
|
||||||
|
|
||||||
|
MlpPolicy = ActorCriticPolicy
|
||||||
|
CnnPolicy = ActorCriticCnnPolicy
|
||||||
|
MultiInputPolicy = MultiInputActorCriticPolicy
|
325
trl_pg/trl_pg.py
Normal file
325
trl_pg/trl_pg.py
Normal file
@ -0,0 +1,325 @@
|
|||||||
|
import warnings
|
||||||
|
from typing import Any, Dict, Optional, Type, Union
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import torch as th
|
||||||
|
from gym import spaces
|
||||||
|
from torch.nn import functional as F
|
||||||
|
|
||||||
|
from stable_baselines3.common.on_policy_algorithm import OnPolicyAlgorithm
|
||||||
|
from stable_baselines3.common.policies import ActorCriticCnnPolicy, ActorCriticPolicy, BasePolicy, MultiInputActorCriticPolicy
|
||||||
|
from stable_baselines3.common.type_aliases import GymEnv, MaybeCallback, Schedule
|
||||||
|
from stable_baselines3.common.utils import explained_variance, get_schedule_fn
|
||||||
|
|
||||||
|
|
||||||
|
class TRL_PG(OnPolicyAlgorithm):
|
||||||
|
"""
|
||||||
|
Differential Trust Region Layer (TRL) for Policy Gradient (PG)
|
||||||
|
|
||||||
|
Paper: https://arxiv.org/abs/2101.09207
|
||||||
|
Code: This implementation borrows (/steals most) code from SB3's PPO implementation https://github.com/DLR-RM/stable-baselines3/blob/master/stable_baselines3/ppo/ppo.py
|
||||||
|
The implementation of the TRL-specific parts borrows from https://github.com/boschresearch/trust-region-layers/blob/main/trust_region_projections/algorithms/pg/pg.py
|
||||||
|
|
||||||
|
:param policy: The policy model to use (MlpPolicy, CnnPolicy, ...)
|
||||||
|
:param env: The environment to learn from (if registered in Gym, can be str)
|
||||||
|
:param learning_rate: The learning rate, it can be a function
|
||||||
|
of the current progress remaining (from 1 to 0)
|
||||||
|
:param n_steps: The number of steps to run for each environment per update
|
||||||
|
(i.e. rollout buffer size is n_steps * n_envs where n_envs is number of environment copies running in parallel)
|
||||||
|
NOTE: n_steps * n_envs must be greater than 1 (because of the advantage normalization)
|
||||||
|
See https://github.com/pytorch/pytorch/issues/29372
|
||||||
|
:param batch_size: Minibatch size
|
||||||
|
:param n_epochs: Number of epoch when optimizing the surrogate loss
|
||||||
|
:param gamma: Discount factor
|
||||||
|
:param gae_lambda: Factor for trade-off of bias vs variance for Generalized Advantage Estimator
|
||||||
|
:param clip_range: Clipping parameter, it can be a function of the current progress
|
||||||
|
remaining (from 1 to 0).
|
||||||
|
:param clip_range_vf: Clipping parameter for the value function,
|
||||||
|
it can be a function of the current progress remaining (from 1 to 0).
|
||||||
|
This is a parameter specific to the OpenAI implementation. If None is passed (default),
|
||||||
|
no clipping will be done on the value function.
|
||||||
|
IMPORTANT: this clipping depends on the reward scaling.
|
||||||
|
:param normalize_advantage: Whether to normalize or not the advantage
|
||||||
|
:param ent_coef: Entropy coefficient for the loss calculation
|
||||||
|
:param vf_coef: Value function coefficient for the loss calculation
|
||||||
|
:param max_grad_norm: The maximum value for the gradient clipping
|
||||||
|
:param use_sde: Whether to use generalized State Dependent Exploration (gSDE)
|
||||||
|
instead of action noise exploration (default: False)
|
||||||
|
:param sde_sample_freq: Sample a new noise matrix every n steps when using gSDE
|
||||||
|
Default: -1 (only sample at the beginning of the rollout)
|
||||||
|
:param target_kl: Limit the KL divergence between updates,
|
||||||
|
because the clipping is not enough to prevent large update
|
||||||
|
see issue #213 (cf https://github.com/hill-a/stable-baselines/issues/213)
|
||||||
|
By default, there is no limit on the kl div.
|
||||||
|
:param tensorboard_log: the log location for tensorboard (if None, no logging)
|
||||||
|
:param create_eval_env: Whether to create a second environment that will be
|
||||||
|
used for evaluating the agent periodically. (Only available when passing string for the environment)
|
||||||
|
:param policy_kwargs: additional arguments to be passed to the policy on creation
|
||||||
|
:param verbose: the verbosity level: 0 no output, 1 info, 2 debug
|
||||||
|
:param seed: Seed for the pseudo random generators
|
||||||
|
:param device: Device (cpu, cuda, ...) on which the code should be run.
|
||||||
|
Setting it to auto, the code will be run on the GPU if possible.
|
||||||
|
:param _init_setup_model: Whether or not to build the network at the creation of the instance
|
||||||
|
"""
|
||||||
|
|
||||||
|
policy_aliases: Dict[str, Type[BasePolicy]] = {
|
||||||
|
"MlpPolicy": ActorCriticPolicy,
|
||||||
|
"CnnPolicy": ActorCriticCnnPolicy,
|
||||||
|
"MultiInputPolicy": MultiInputActorCriticPolicy,
|
||||||
|
}
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
policy: Union[str, Type[ActorCriticPolicy]],
|
||||||
|
env: Union[GymEnv, str],
|
||||||
|
learning_rate: Union[float, Schedule] = 3e-4,
|
||||||
|
n_steps: int = 2048,
|
||||||
|
batch_size: int = 64,
|
||||||
|
n_epochs: int = 10,
|
||||||
|
gamma: float = 0.99,
|
||||||
|
gae_lambda: float = 0.95,
|
||||||
|
clip_range: Union[float, Schedule] = 0.2,
|
||||||
|
clip_range_vf: Union[None, float, Schedule] = None,
|
||||||
|
normalize_advantage: bool = True,
|
||||||
|
ent_coef: float = 0.0,
|
||||||
|
vf_coef: float = 0.5,
|
||||||
|
max_grad_norm: float = 0.5,
|
||||||
|
use_sde: bool = False,
|
||||||
|
sde_sample_freq: int = -1,
|
||||||
|
target_kl: Optional[float] = None,
|
||||||
|
tensorboard_log: Optional[str] = None,
|
||||||
|
create_eval_env: bool = False,
|
||||||
|
policy_kwargs: Optional[Dict[str, Any]] = None,
|
||||||
|
verbose: int = 0,
|
||||||
|
seed: Optional[int] = None,
|
||||||
|
device: Union[th.device, str] = "auto",
|
||||||
|
|
||||||
|
# Different from PPO:
|
||||||
|
importance_ratio_clip: Union[float, None] = 0.2
|
||||||
|
#TODO: projection: BaseProjectionLayer = None,
|
||||||
|
|
||||||
|
_init_setup_model: bool = True,
|
||||||
|
):
|
||||||
|
|
||||||
|
super().__init__(
|
||||||
|
policy,
|
||||||
|
env,
|
||||||
|
learning_rate=learning_rate,
|
||||||
|
n_steps=n_steps,
|
||||||
|
gamma=gamma,
|
||||||
|
gae_lambda=gae_lambda,
|
||||||
|
ent_coef=ent_coef,
|
||||||
|
vf_coef=vf_coef,
|
||||||
|
max_grad_norm=max_grad_norm,
|
||||||
|
use_sde=use_sde,
|
||||||
|
sde_sample_freq=sde_sample_freq,
|
||||||
|
tensorboard_log=tensorboard_log,
|
||||||
|
policy_kwargs=policy_kwargs,
|
||||||
|
verbose=verbose,
|
||||||
|
device=device,
|
||||||
|
create_eval_env=create_eval_env,
|
||||||
|
seed=seed,
|
||||||
|
_init_setup_model=False,
|
||||||
|
supported_action_spaces=(
|
||||||
|
spaces.Box,
|
||||||
|
spaces.Discrete,
|
||||||
|
spaces.MultiDiscrete,
|
||||||
|
spaces.MultiBinary,
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
# Sanity check, otherwise it will lead to noisy gradient and NaN
|
||||||
|
# because of the advantage normalization
|
||||||
|
if normalize_advantage:
|
||||||
|
assert (
|
||||||
|
batch_size > 1
|
||||||
|
), "`batch_size` must be greater than 1. See https://github.com/DLR-RM/stable-baselines3/issues/440"
|
||||||
|
|
||||||
|
if self.env is not None:
|
||||||
|
# Check that `n_steps * n_envs > 1` to avoid NaN
|
||||||
|
# when doing advantage normalization
|
||||||
|
buffer_size = self.env.num_envs * self.n_steps
|
||||||
|
assert (
|
||||||
|
buffer_size > 1
|
||||||
|
), f"`n_steps * n_envs` must be greater than 1. Currently n_steps={self.n_steps} and n_envs={self.env.num_envs}"
|
||||||
|
# Check that the rollout buffer size is a multiple of the mini-batch size
|
||||||
|
untruncated_batches = buffer_size // batch_size
|
||||||
|
if buffer_size % batch_size > 0:
|
||||||
|
warnings.warn(
|
||||||
|
f"You have specified a mini-batch size of {batch_size},"
|
||||||
|
f" but because the `RolloutBuffer` is of size `n_steps * n_envs = {buffer_size}`,"
|
||||||
|
f" after every {untruncated_batches} untruncated mini-batches,"
|
||||||
|
f" there will be a truncated mini-batch of size {buffer_size % batch_size}\n"
|
||||||
|
f"We recommend using a `batch_size` that is a factor of `n_steps * n_envs`.\n"
|
||||||
|
f"Info: (n_steps={self.n_steps} and n_envs={self.env.num_envs})"
|
||||||
|
)
|
||||||
|
self.batch_size = batch_size
|
||||||
|
self.n_epochs = n_epochs
|
||||||
|
self.clip_range = clip_range
|
||||||
|
self.clip_range_vf = clip_range_vf
|
||||||
|
self.normalize_advantage = normalize_advantage
|
||||||
|
self.target_kl = target_kl
|
||||||
|
|
||||||
|
# Different from PPO:
|
||||||
|
self.importance_ratio_clip = importance_ratio_clip or 0.0
|
||||||
|
|
||||||
|
if _init_setup_model:
|
||||||
|
self._setup_model()
|
||||||
|
|
||||||
|
def _setup_model(self) -> None:
|
||||||
|
super()._setup_model()
|
||||||
|
|
||||||
|
# Initialize schedules for policy/value clipping
|
||||||
|
self.clip_range = get_schedule_fn(self.clip_range)
|
||||||
|
if self.clip_range_vf is not None:
|
||||||
|
if isinstance(self.clip_range_vf, (float, int)):
|
||||||
|
assert self.clip_range_vf > 0, "`clip_range_vf` must be positive, " "pass `None` to deactivate vf clipping"
|
||||||
|
|
||||||
|
self.clip_range_vf = get_schedule_fn(self.clip_range_vf)
|
||||||
|
|
||||||
|
def train(self) -> None:
|
||||||
|
"""
|
||||||
|
Update policy using the currently gathered rollout buffer.
|
||||||
|
"""
|
||||||
|
# Switch to train mode (this affects batch norm / dropout)
|
||||||
|
self.policy.set_training_mode(True)
|
||||||
|
# Update optimizer learning rate
|
||||||
|
self._update_learning_rate(self.policy.optimizer)
|
||||||
|
# Compute current clip range
|
||||||
|
clip_range = self.clip_range(self._current_progress_remaining)
|
||||||
|
# Optional: clip range for the value function
|
||||||
|
if self.clip_range_vf is not None:
|
||||||
|
clip_range_vf = self.clip_range_vf(self._current_progress_remaining)
|
||||||
|
|
||||||
|
entropy_losses = []
|
||||||
|
pg_losses, value_losses = [], []
|
||||||
|
clip_fractions = []
|
||||||
|
|
||||||
|
continue_training = True
|
||||||
|
|
||||||
|
# train for n_epochs epochs
|
||||||
|
for epoch in range(self.n_epochs):
|
||||||
|
approx_kl_divs = []
|
||||||
|
# Do a complete pass on the rollout buffer
|
||||||
|
for rollout_data in self.rollout_buffer.get(self.batch_size):
|
||||||
|
actions = rollout_data.actions
|
||||||
|
if isinstance(self.action_space, spaces.Discrete):
|
||||||
|
# Convert discrete action from float to long
|
||||||
|
actions = rollout_data.actions.long().flatten()
|
||||||
|
|
||||||
|
# Re-sample the noise matrix because the log_std has changed
|
||||||
|
if self.use_sde:
|
||||||
|
self.policy.reset_noise(self.batch_size)
|
||||||
|
|
||||||
|
values, log_prob, entropy = self.policy.evaluate_actions(rollout_data.observations, actions)
|
||||||
|
values = values.flatten()
|
||||||
|
# Normalize advantage
|
||||||
|
advantages = rollout_data.advantages
|
||||||
|
if self.normalize_advantage:
|
||||||
|
advantages = (advantages - advantages.mean()) / (advantages.std() + 1e-8)
|
||||||
|
|
||||||
|
# ratio between old and new policy, should be one at the first iteration
|
||||||
|
ratio = th.exp(log_prob - rollout_data.old_log_prob)
|
||||||
|
|
||||||
|
# clipped surrogate loss
|
||||||
|
policy_loss_1 = advantages * ratio
|
||||||
|
policy_loss_2 = advantages * th.clamp(ratio, 1 - clip_range, 1 + clip_range)
|
||||||
|
policy_loss = -th.min(policy_loss_1, policy_loss_2).mean()
|
||||||
|
|
||||||
|
# Logging
|
||||||
|
pg_losses.append(policy_loss.item())
|
||||||
|
clip_fraction = th.mean((th.abs(ratio - 1) > clip_range).float()).item()
|
||||||
|
clip_fractions.append(clip_fraction)
|
||||||
|
|
||||||
|
if self.clip_range_vf is None:
|
||||||
|
# No clipping
|
||||||
|
values_pred = values
|
||||||
|
else:
|
||||||
|
# Clip the different between old and new value
|
||||||
|
# NOTE: this depends on the reward scaling
|
||||||
|
values_pred = rollout_data.old_values + th.clamp(
|
||||||
|
values - rollout_data.old_values, -clip_range_vf, clip_range_vf
|
||||||
|
)
|
||||||
|
# Value loss using the TD(gae_lambda) target
|
||||||
|
value_loss = F.mse_loss(rollout_data.returns, values_pred)
|
||||||
|
value_losses.append(value_loss.item())
|
||||||
|
|
||||||
|
# Entropy loss favor exploration
|
||||||
|
if entropy is None:
|
||||||
|
# Approximate entropy when no analytical form
|
||||||
|
entropy_loss = -th.mean(-log_prob)
|
||||||
|
else:
|
||||||
|
entropy_loss = -th.mean(entropy)
|
||||||
|
|
||||||
|
entropy_losses.append(entropy_loss.item())
|
||||||
|
|
||||||
|
loss = policy_loss + self.ent_coef * entropy_loss + self.vf_coef * value_loss
|
||||||
|
|
||||||
|
# Calculate approximate form of reverse KL Divergence for early stopping
|
||||||
|
# see issue #417: https://github.com/DLR-RM/stable-baselines3/issues/417
|
||||||
|
# and discussion in PR #419: https://github.com/DLR-RM/stable-baselines3/pull/419
|
||||||
|
# and Schulman blog: http://joschu.net/blog/kl-approx.html
|
||||||
|
with th.no_grad():
|
||||||
|
log_ratio = log_prob - rollout_data.old_log_prob
|
||||||
|
approx_kl_div = th.mean((th.exp(log_ratio) - 1) - log_ratio).cpu().numpy()
|
||||||
|
approx_kl_divs.append(approx_kl_div)
|
||||||
|
|
||||||
|
if self.target_kl is not None and approx_kl_div > 1.5 * self.target_kl:
|
||||||
|
continue_training = False
|
||||||
|
if self.verbose >= 1:
|
||||||
|
print(f"Early stopping at step {epoch} due to reaching max kl: {approx_kl_div:.2f}")
|
||||||
|
break
|
||||||
|
|
||||||
|
# Optimization step
|
||||||
|
self.policy.optimizer.zero_grad()
|
||||||
|
loss.backward()
|
||||||
|
# Clip grad norm
|
||||||
|
th.nn.utils.clip_grad_norm_(self.policy.parameters(), self.max_grad_norm)
|
||||||
|
self.policy.optimizer.step()
|
||||||
|
|
||||||
|
if not continue_training:
|
||||||
|
break
|
||||||
|
|
||||||
|
self._n_updates += self.n_epochs
|
||||||
|
explained_var = explained_variance(self.rollout_buffer.values.flatten(), self.rollout_buffer.returns.flatten())
|
||||||
|
|
||||||
|
# Logs
|
||||||
|
self.logger.record("train/entropy_loss", np.mean(entropy_losses))
|
||||||
|
self.logger.record("train/policy_gradient_loss", np.mean(pg_losses))
|
||||||
|
self.logger.record("train/value_loss", np.mean(value_losses))
|
||||||
|
self.logger.record("train/approx_kl", np.mean(approx_kl_divs))
|
||||||
|
self.logger.record("train/clip_fraction", np.mean(clip_fractions))
|
||||||
|
self.logger.record("train/loss", loss.item())
|
||||||
|
self.logger.record("train/explained_variance", explained_var)
|
||||||
|
if hasattr(self.policy, "log_std"):
|
||||||
|
self.logger.record("train/std", th.exp(self.policy.log_std).mean().item())
|
||||||
|
|
||||||
|
self.logger.record("train/n_updates", self._n_updates, exclude="tensorboard")
|
||||||
|
self.logger.record("train/clip_range", clip_range)
|
||||||
|
if self.clip_range_vf is not None:
|
||||||
|
self.logger.record("train/clip_range_vf", clip_range_vf)
|
||||||
|
|
||||||
|
def learn(
|
||||||
|
self,
|
||||||
|
total_timesteps: int,
|
||||||
|
callback: MaybeCallback = None,
|
||||||
|
log_interval: int = 1,
|
||||||
|
eval_env: Optional[GymEnv] = None,
|
||||||
|
eval_freq: int = -1,
|
||||||
|
n_eval_episodes: int = 5,
|
||||||
|
tb_log_name: str = "PPO",
|
||||||
|
eval_log_path: Optional[str] = None,
|
||||||
|
reset_num_timesteps: bool = True,
|
||||||
|
) -> "PPO":
|
||||||
|
|
||||||
|
return super().learn(
|
||||||
|
total_timesteps=total_timesteps,
|
||||||
|
callback=callback,
|
||||||
|
log_interval=log_interval,
|
||||||
|
eval_env=eval_env,
|
||||||
|
eval_freq=eval_freq,
|
||||||
|
n_eval_episodes=n_eval_episodes,
|
||||||
|
tb_log_name=tb_log_name,
|
||||||
|
eval_log_path=eval_log_path,
|
||||||
|
reset_num_timesteps=reset_num_timesteps,
|
||||||
|
)
|
2
trl_sac/__init__.py
Normal file
2
trl_sac/__init__.py
Normal file
@ -0,0 +1,2 @@
|
|||||||
|
from sb3_trl.trl_sac.policies import CnnPolicy, MlpPolicy, MultiInputPolicy
|
||||||
|
from sb3_trl.trl_sac.trl_sac import TRL_SAC
|
@ -14,9 +14,13 @@ from stable_baselines3.common.utils import polyak_update
|
|||||||
from stable_baselines3.sac.policies import CnnPolicy, MlpPolicy, MultiInputPolicy, SACPolicy
|
from stable_baselines3.sac.policies import CnnPolicy, MlpPolicy, MultiInputPolicy, SACPolicy
|
||||||
|
|
||||||
|
|
||||||
class SAC(OffPolicyAlgorithm):
|
class TRL_SAC(OffPolicyAlgorithm):
|
||||||
"""
|
"""
|
||||||
Soft Actor-Critic (SAC)
|
Trust Region Layers (TRL) based on SAC (Soft Actor Critic)
|
||||||
|
This implementation is almost a 1:1-copy of the sb3-code for SAC.
|
||||||
|
Only minor changes have been made to implement Differential Trust Region Layers
|
||||||
|
|
||||||
|
Description from original SAC implementation:
|
||||||
Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor,
|
Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor,
|
||||||
This implementation borrows code from original implementation (https://github.com/haarnoja/sac)
|
This implementation borrows code from original implementation (https://github.com/haarnoja/sac)
|
||||||
from OpenAI Spinning Up (https://github.com/openai/spinningup), from the softlearning repo
|
from OpenAI Spinning Up (https://github.com/openai/spinningup), from the softlearning repo
|
Loading…
Reference in New Issue
Block a user