Refactored some stuff out
This commit is contained in:
parent
edf00553dd
commit
bc61a6db32
46
sb3_trl/misc/distTools.py
Normal file
46
sb3_trl/misc/distTools.py
Normal file
@ -0,0 +1,46 @@
|
||||
import torch as th
|
||||
|
||||
from stable_baselines3.common.distributions import Distribution as SB3_Distribution
|
||||
|
||||
|
||||
def get_mean_and_chol(p):
|
||||
if isinstance(p, th.distributions.Normal):
|
||||
return p.mean, p.stddev
|
||||
elif isinstance(p, th.distributions.MultivariateNormal):
|
||||
return p.mean, p.scale_tril
|
||||
elif isinstance(p, SB3_Distribution):
|
||||
return get_mean_and_chol(p.distribution)
|
||||
else:
|
||||
raise Exception('Dist-Type not implemented')
|
||||
|
||||
|
||||
def get_cov(p):
|
||||
if isinstance(p, th.distributions.Normal):
|
||||
return th.diag(p.variance)
|
||||
elif isinstance(p, th.distributions.MultivariateNormal):
|
||||
return p.covariance_matrix
|
||||
elif isinstance(p, SB3_Distribution):
|
||||
return get_cov(p.distribution)
|
||||
else:
|
||||
raise Exception('Dist-Type not implemented')
|
||||
|
||||
|
||||
def new_dist_like(orig_p, mean, chol):
|
||||
if isinstance(orig_p, th.distributions.Normal):
|
||||
return th.distributions.Normal(mean, chol)
|
||||
elif isinstance(orig_p, th.distributions.MultivariateNormal):
|
||||
return th.distributions.MultivariateNormal(mean, scale_tril=chol)
|
||||
elif isinstance(orig_p, SB3_Distribution):
|
||||
p = orig_p.distribution
|
||||
if isinstance(p, th.distributions.Normal):
|
||||
p_out = orig_p.__class__(orig_p.action_dim)
|
||||
p_out.distribution = th.distributions.Normal(mean, chol)
|
||||
elif isinstance(p, th.distributions.MultivariateNormal):
|
||||
p_out = orig_p.__class__(orig_p.action_dim)
|
||||
p_out.distribution = th.distributions.MultivariateNormal(
|
||||
mean, scale_tril=chol)
|
||||
else:
|
||||
raise Exception('Dist-Type not implemented (of sb3 dist)')
|
||||
return p_out
|
||||
else:
|
||||
raise Exception('Dist-Type not implemented')
|
12
sb3_trl/misc/norm.py
Normal file
12
sb3_trl/misc/norm.py
Normal file
@ -0,0 +1,12 @@
|
||||
import torch as th
|
||||
from torch.distributions.multivariate_normal import _batch_mahalanobis
|
||||
|
||||
|
||||
def mahalanobis_blub(u, v, std):
|
||||
delta = u - v
|
||||
return th.triangular_solve(delta, std, upper=False)[0].pow(2).sum([-2, -1])
|
||||
|
||||
|
||||
def mahalanobis(u, v, cov):
|
||||
delta = u - v
|
||||
return _batch_mahalanobis(cov, delta)
|
102
sb3_trl/misc/rollout_buffer.py
Normal file
102
sb3_trl/misc/rollout_buffer.py
Normal file
@ -0,0 +1,102 @@
|
||||
from typing import Any, Dict, Optional, Type, Union, NamedTuple
|
||||
|
||||
import numpy as np
|
||||
import torch as th
|
||||
from gym import spaces
|
||||
|
||||
from stable_baselines3.common.buffers import RolloutBuffer
|
||||
from stable_baselines3.common.vec_env import VecNormalize
|
||||
|
||||
|
||||
class GaussianRolloutBufferSamples(NamedTuple):
|
||||
observations: th.Tensor
|
||||
actions: th.Tensor
|
||||
old_values: th.Tensor
|
||||
old_log_prob: th.Tensor
|
||||
advantages: th.Tensor
|
||||
returns: th.Tensor
|
||||
means: th.Tensor
|
||||
stds: th.Tensor
|
||||
|
||||
|
||||
class GaussianRolloutBuffer(RolloutBuffer):
|
||||
def __init__(
|
||||
self,
|
||||
buffer_size: int,
|
||||
observation_space: spaces.Space,
|
||||
action_space: spaces.Space,
|
||||
device: Union[th.device, str] = "cpu",
|
||||
gae_lambda: float = 1,
|
||||
gamma: float = 0.99,
|
||||
n_envs: int = 1,
|
||||
):
|
||||
|
||||
super().__init__(buffer_size, observation_space, action_space,
|
||||
device, n_envs=n_envs, gae_lambda=gae_lambda, gamma=gamma)
|
||||
self.means, self.stds = None, None
|
||||
|
||||
def reset(self) -> None:
|
||||
self.means = np.zeros(
|
||||
(self.buffer_size, self.n_envs) + self.action_space.shape, dtype=np.float32)
|
||||
self.stds = np.zeros(
|
||||
# (self.buffer_size, self.n_envs) + self.action_space.shape + self.action_space.shape, dtype=np.float32)
|
||||
(self.buffer_size, self.n_envs) + self.action_space.shape, dtype=np.float32)
|
||||
super().reset()
|
||||
|
||||
def add(
|
||||
self,
|
||||
obs: np.ndarray,
|
||||
action: np.ndarray,
|
||||
reward: np.ndarray,
|
||||
episode_start: np.ndarray,
|
||||
value: th.Tensor,
|
||||
log_prob: th.Tensor,
|
||||
mean: th.Tensor,
|
||||
std: th.Tensor,
|
||||
) -> None:
|
||||
"""
|
||||
:param obs: Observation
|
||||
:param action: Action
|
||||
:param reward:
|
||||
:param episode_start: Start of episode signal.
|
||||
:param value: estimated value of the current state
|
||||
following the current policy.
|
||||
:param log_prob: log probability of the action
|
||||
following the current policy.
|
||||
:param mean: Foo
|
||||
:param std: Bar
|
||||
"""
|
||||
|
||||
if len(log_prob.shape) == 0:
|
||||
# Reshape 0-d tensor to avoid error
|
||||
log_prob = log_prob.reshape(-1, 1)
|
||||
|
||||
# Reshape needed when using multiple envs with discrete observations
|
||||
# as numpy cannot broadcast (n_discrete,) to (n_discrete, 1)
|
||||
if isinstance(self.observation_space, spaces.Discrete):
|
||||
obs = obs.reshape((self.n_envs,) + self.obs_shape)
|
||||
|
||||
self.observations[self.pos] = np.array(obs).copy()
|
||||
self.actions[self.pos] = np.array(action).copy()
|
||||
self.rewards[self.pos] = np.array(reward).copy()
|
||||
self.episode_starts[self.pos] = np.array(episode_start).copy()
|
||||
self.values[self.pos] = value.clone().cpu().numpy().flatten()
|
||||
self.log_probs[self.pos] = log_prob.clone().cpu().numpy()
|
||||
self.means[self.pos] = mean.clone().cpu().numpy()
|
||||
self.stds[self.pos] = std.clone().cpu().numpy()
|
||||
self.pos += 1
|
||||
if self.pos == self.buffer_size:
|
||||
self.full = True
|
||||
|
||||
def _get_samples(self, batch_inds: np.ndarray, env: Optional[VecNormalize] = None) -> GaussianRolloutBufferSamples:
|
||||
data = (
|
||||
self.observations[batch_inds],
|
||||
self.actions[batch_inds],
|
||||
self.values[batch_inds].flatten(),
|
||||
self.log_probs[batch_inds].flatten(),
|
||||
self.advantages[batch_inds].flatten(),
|
||||
self.returns[batch_inds].flatten(),
|
||||
self.means[batch_inds].reshape((len(batch_inds), -1)),
|
||||
self.stds[batch_inds].reshape((len(batch_inds), -1)),
|
||||
)
|
||||
return GaussianRolloutBufferSamples(*tuple(map(self.to_torch, data)))
|
Loading…
Reference in New Issue
Block a user