Refactored some stuff out

This commit is contained in:
Dominik Moritz Roth 2022-06-26 16:39:37 +02:00
parent edf00553dd
commit bc61a6db32
3 changed files with 160 additions and 0 deletions

46
sb3_trl/misc/distTools.py Normal file
View File

@ -0,0 +1,46 @@
import torch as th
from stable_baselines3.common.distributions import Distribution as SB3_Distribution
def get_mean_and_chol(p):
if isinstance(p, th.distributions.Normal):
return p.mean, p.stddev
elif isinstance(p, th.distributions.MultivariateNormal):
return p.mean, p.scale_tril
elif isinstance(p, SB3_Distribution):
return get_mean_and_chol(p.distribution)
else:
raise Exception('Dist-Type not implemented')
def get_cov(p):
if isinstance(p, th.distributions.Normal):
return th.diag(p.variance)
elif isinstance(p, th.distributions.MultivariateNormal):
return p.covariance_matrix
elif isinstance(p, SB3_Distribution):
return get_cov(p.distribution)
else:
raise Exception('Dist-Type not implemented')
def new_dist_like(orig_p, mean, chol):
if isinstance(orig_p, th.distributions.Normal):
return th.distributions.Normal(mean, chol)
elif isinstance(orig_p, th.distributions.MultivariateNormal):
return th.distributions.MultivariateNormal(mean, scale_tril=chol)
elif isinstance(orig_p, SB3_Distribution):
p = orig_p.distribution
if isinstance(p, th.distributions.Normal):
p_out = orig_p.__class__(orig_p.action_dim)
p_out.distribution = th.distributions.Normal(mean, chol)
elif isinstance(p, th.distributions.MultivariateNormal):
p_out = orig_p.__class__(orig_p.action_dim)
p_out.distribution = th.distributions.MultivariateNormal(
mean, scale_tril=chol)
else:
raise Exception('Dist-Type not implemented (of sb3 dist)')
return p_out
else:
raise Exception('Dist-Type not implemented')

12
sb3_trl/misc/norm.py Normal file
View File

@ -0,0 +1,12 @@
import torch as th
from torch.distributions.multivariate_normal import _batch_mahalanobis
def mahalanobis_blub(u, v, std):
delta = u - v
return th.triangular_solve(delta, std, upper=False)[0].pow(2).sum([-2, -1])
def mahalanobis(u, v, cov):
delta = u - v
return _batch_mahalanobis(cov, delta)

View File

@ -0,0 +1,102 @@
from typing import Any, Dict, Optional, Type, Union, NamedTuple
import numpy as np
import torch as th
from gym import spaces
from stable_baselines3.common.buffers import RolloutBuffer
from stable_baselines3.common.vec_env import VecNormalize
class GaussianRolloutBufferSamples(NamedTuple):
observations: th.Tensor
actions: th.Tensor
old_values: th.Tensor
old_log_prob: th.Tensor
advantages: th.Tensor
returns: th.Tensor
means: th.Tensor
stds: th.Tensor
class GaussianRolloutBuffer(RolloutBuffer):
def __init__(
self,
buffer_size: int,
observation_space: spaces.Space,
action_space: spaces.Space,
device: Union[th.device, str] = "cpu",
gae_lambda: float = 1,
gamma: float = 0.99,
n_envs: int = 1,
):
super().__init__(buffer_size, observation_space, action_space,
device, n_envs=n_envs, gae_lambda=gae_lambda, gamma=gamma)
self.means, self.stds = None, None
def reset(self) -> None:
self.means = np.zeros(
(self.buffer_size, self.n_envs) + self.action_space.shape, dtype=np.float32)
self.stds = np.zeros(
# (self.buffer_size, self.n_envs) + self.action_space.shape + self.action_space.shape, dtype=np.float32)
(self.buffer_size, self.n_envs) + self.action_space.shape, dtype=np.float32)
super().reset()
def add(
self,
obs: np.ndarray,
action: np.ndarray,
reward: np.ndarray,
episode_start: np.ndarray,
value: th.Tensor,
log_prob: th.Tensor,
mean: th.Tensor,
std: th.Tensor,
) -> None:
"""
:param obs: Observation
:param action: Action
:param reward:
:param episode_start: Start of episode signal.
:param value: estimated value of the current state
following the current policy.
:param log_prob: log probability of the action
following the current policy.
:param mean: Foo
:param std: Bar
"""
if len(log_prob.shape) == 0:
# Reshape 0-d tensor to avoid error
log_prob = log_prob.reshape(-1, 1)
# Reshape needed when using multiple envs with discrete observations
# as numpy cannot broadcast (n_discrete,) to (n_discrete, 1)
if isinstance(self.observation_space, spaces.Discrete):
obs = obs.reshape((self.n_envs,) + self.obs_shape)
self.observations[self.pos] = np.array(obs).copy()
self.actions[self.pos] = np.array(action).copy()
self.rewards[self.pos] = np.array(reward).copy()
self.episode_starts[self.pos] = np.array(episode_start).copy()
self.values[self.pos] = value.clone().cpu().numpy().flatten()
self.log_probs[self.pos] = log_prob.clone().cpu().numpy()
self.means[self.pos] = mean.clone().cpu().numpy()
self.stds[self.pos] = std.clone().cpu().numpy()
self.pos += 1
if self.pos == self.buffer_size:
self.full = True
def _get_samples(self, batch_inds: np.ndarray, env: Optional[VecNormalize] = None) -> GaussianRolloutBufferSamples:
data = (
self.observations[batch_inds],
self.actions[batch_inds],
self.values[batch_inds].flatten(),
self.log_probs[batch_inds].flatten(),
self.advantages[batch_inds].flatten(),
self.returns[batch_inds].flatten(),
self.means[batch_inds].reshape((len(batch_inds), -1)),
self.stds[batch_inds].reshape((len(batch_inds), -1)),
)
return GaussianRolloutBufferSamples(*tuple(map(self.to_torch, data)))