Fixed all the bugs in TRPL

This commit is contained in:
Dominik Moritz Roth 2022-08-15 16:55:17 +02:00
parent 28d0c609bc
commit d35c3d8520
4 changed files with 31 additions and 10 deletions

View File

@ -221,13 +221,19 @@ class UniversalGaussianDistribution(SB3_Distribution):
def _sqrt_to_chol(self, cov_sqrt): def _sqrt_to_chol(self, cov_sqrt):
vec = False vec = False
if len(cov_sqrt.shape) == 2: nobatch = False
if len(cov_sqrt.shape) <= 2:
vec = True vec = True
if len(cov_sqrt.shape) == 1:
nobatch = True
if vec: if vec:
cov_sqrt = th.diag_embed(cov_sqrt) cov_sqrt = th.diag_embed(cov_sqrt)
cov = th.bmm(cov_sqrt.mT, cov_sqrt) if nobatch:
cov = th.mm(cov_sqrt.mT, cov_sqrt)
else:
cov = th.bmm(cov_sqrt.mT, cov_sqrt)
chol = th.linalg.cholesky(cov) chol = th.linalg.cholesky(cov)
if vec: if vec:

View File

@ -26,7 +26,12 @@ def get_mean_and_sqrt(p: UniversalGaussianDistribution, expand=False):
else: else:
mean, chol = get_mean_and_chol(p, expand=False) mean, chol = get_mean_and_chol(p, expand=False)
sqrt_cov = p.cov_sqrt sqrt_cov = p.cov_sqrt
if expand and len(sqrt_cov.shape) == 2: if mean.shape[0] != sqrt_cov.shape[0]:
shape = list(sqrt_cov.shape)
shape[0] = mean.shape[0]
shape = tuple(shape)
sqrt_cov = sqrt_cov.expand(shape)
if expand and len(sqrt_cov.shape) <= 2:
sqrt_cov = th.diag_embed(sqrt_cov) sqrt_cov = th.diag_embed(sqrt_cov)
return mean, sqrt_cov return mean, sqrt_cov

View File

@ -315,9 +315,19 @@ class ActorCriticPolicy(BasePolicy):
elif isinstance(self.action_dist, UniversalGaussianDistribution): elif isinstance(self.action_dist, UniversalGaussianDistribution):
if self.sqrt_induced_gaussian: if self.sqrt_induced_gaussian:
chol_sqrt_cov = self.chol_net(latent_pi) chol_sqrt_cov = self.chol_net(latent_pi)
if len(chol_sqrt_cov.shape) == 2: unembed = False
squeeze = False
if len(chol_sqrt_cov.shape) <= 2:
unembed = True
chol_sqrt_cov = th.diag_embed(chol_sqrt_cov) chol_sqrt_cov = th.diag_embed(chol_sqrt_cov)
if len(chol_sqrt_cov.shape) <= 2:
squeeze = True
chol_sqrt_cov = chol_sqrt_cov.unsqueeze(0)
cov_sqrt = th.bmm(chol_sqrt_cov.mT, chol_sqrt_cov) cov_sqrt = th.bmm(chol_sqrt_cov.mT, chol_sqrt_cov)
if squeeze and False:
cov_sqrt = cov_sqrt.squeeze()
if unembed:
cov_sqrt = th.diagonal(cov_sqrt, dim1=-2, dim2=-1)
dist = self.action_dist.proba_distribution_from_sqrt( dist = self.action_dist.proba_distribution_from_sqrt(
mean_actions, cov_sqrt, latent_pi) mean_actions, cov_sqrt, latent_pi)
mean, chol = get_mean_and_chol(dist, expand=False) mean, chol = get_mean_and_chol(dist, expand=False)

12
test.py
View File

@ -20,21 +20,21 @@ root_path = '.'
def main(env_name='ColumbusCandyland_Aux10-v0', timesteps=1_000_000, showRes=True, saveModel=True, n_eval_episodes=0): def main(env_name='ColumbusCandyland_Aux10-v0', timesteps=1_000_000, showRes=True, saveModel=True, n_eval_episodes=0):
env = gym.make(env_name) env = gym.make(env_name)
use_sde = True use_sde = False
ppo = PPO( ppo = PPO(
MlpPolicyPPO, MlpPolicyPPO,
env, env,
projection=BaseProjectionLayer(), projection=KLProjectionLayer(trust_region_coeff=0.01),
policy_kwargs={'dist_kwargs': {'neural_strength': Strength.FULL, 'cov_strength': Strength.FULL, 'parameterization_type': policy_kwargs={'dist_kwargs': {'neural_strength': Strength.SCALAR, 'cov_strength': Strength.DIAG, 'parameterization_type':
ParametrizationType.CHOL, 'enforce_positive_type': EnforcePositiveType.ABS, 'prob_squashing_type': ProbSquashingType.NONE}}, ParametrizationType.NONE, 'enforce_positive_type': EnforcePositiveType.ABS, 'prob_squashing_type': ProbSquashingType.NONE}},
verbose=0, verbose=0,
tensorboard_log=root_path+"/logs_tb/" + tensorboard_log=root_path+"/logs_tb/" +
env_name+"/ppo"+(['', '_sde'][use_sde])+"/", env_name+"/ppo"+(['', '_sde'][use_sde])+"/",
learning_rate=3e-4, learning_rate=3e-4, # 3e-4,
gamma=0.99, gamma=0.99,
gae_lambda=0.95, gae_lambda=0.95,
normalize_advantage=True, normalize_advantage=True,
ent_coef=0.02, # 0.1 ent_coef=0.1, # 0.1
vf_coef=0.5, vf_coef=0.5,
use_sde=use_sde, # False use_sde=use_sde, # False
clip_range=1 # 0.2, clip_range=1 # 0.2,