Fixed all the bugs in TRPL
This commit is contained in:
parent
28d0c609bc
commit
d35c3d8520
@ -221,12 +221,18 @@ class UniversalGaussianDistribution(SB3_Distribution):
|
||||
|
||||
def _sqrt_to_chol(self, cov_sqrt):
|
||||
vec = False
|
||||
if len(cov_sqrt.shape) == 2:
|
||||
nobatch = False
|
||||
if len(cov_sqrt.shape) <= 2:
|
||||
vec = True
|
||||
if len(cov_sqrt.shape) == 1:
|
||||
nobatch = True
|
||||
|
||||
if vec:
|
||||
cov_sqrt = th.diag_embed(cov_sqrt)
|
||||
|
||||
if nobatch:
|
||||
cov = th.mm(cov_sqrt.mT, cov_sqrt)
|
||||
else:
|
||||
cov = th.bmm(cov_sqrt.mT, cov_sqrt)
|
||||
chol = th.linalg.cholesky(cov)
|
||||
|
||||
|
@ -26,7 +26,12 @@ def get_mean_and_sqrt(p: UniversalGaussianDistribution, expand=False):
|
||||
else:
|
||||
mean, chol = get_mean_and_chol(p, expand=False)
|
||||
sqrt_cov = p.cov_sqrt
|
||||
if expand and len(sqrt_cov.shape) == 2:
|
||||
if mean.shape[0] != sqrt_cov.shape[0]:
|
||||
shape = list(sqrt_cov.shape)
|
||||
shape[0] = mean.shape[0]
|
||||
shape = tuple(shape)
|
||||
sqrt_cov = sqrt_cov.expand(shape)
|
||||
if expand and len(sqrt_cov.shape) <= 2:
|
||||
sqrt_cov = th.diag_embed(sqrt_cov)
|
||||
return mean, sqrt_cov
|
||||
|
||||
|
@ -315,9 +315,19 @@ class ActorCriticPolicy(BasePolicy):
|
||||
elif isinstance(self.action_dist, UniversalGaussianDistribution):
|
||||
if self.sqrt_induced_gaussian:
|
||||
chol_sqrt_cov = self.chol_net(latent_pi)
|
||||
if len(chol_sqrt_cov.shape) == 2:
|
||||
unembed = False
|
||||
squeeze = False
|
||||
if len(chol_sqrt_cov.shape) <= 2:
|
||||
unembed = True
|
||||
chol_sqrt_cov = th.diag_embed(chol_sqrt_cov)
|
||||
if len(chol_sqrt_cov.shape) <= 2:
|
||||
squeeze = True
|
||||
chol_sqrt_cov = chol_sqrt_cov.unsqueeze(0)
|
||||
cov_sqrt = th.bmm(chol_sqrt_cov.mT, chol_sqrt_cov)
|
||||
if squeeze and False:
|
||||
cov_sqrt = cov_sqrt.squeeze()
|
||||
if unembed:
|
||||
cov_sqrt = th.diagonal(cov_sqrt, dim1=-2, dim2=-1)
|
||||
dist = self.action_dist.proba_distribution_from_sqrt(
|
||||
mean_actions, cov_sqrt, latent_pi)
|
||||
mean, chol = get_mean_and_chol(dist, expand=False)
|
||||
|
12
test.py
12
test.py
@ -20,21 +20,21 @@ root_path = '.'
|
||||
|
||||
def main(env_name='ColumbusCandyland_Aux10-v0', timesteps=1_000_000, showRes=True, saveModel=True, n_eval_episodes=0):
|
||||
env = gym.make(env_name)
|
||||
use_sde = True
|
||||
use_sde = False
|
||||
ppo = PPO(
|
||||
MlpPolicyPPO,
|
||||
env,
|
||||
projection=BaseProjectionLayer(),
|
||||
policy_kwargs={'dist_kwargs': {'neural_strength': Strength.FULL, 'cov_strength': Strength.FULL, 'parameterization_type':
|
||||
ParametrizationType.CHOL, 'enforce_positive_type': EnforcePositiveType.ABS, 'prob_squashing_type': ProbSquashingType.NONE}},
|
||||
projection=KLProjectionLayer(trust_region_coeff=0.01),
|
||||
policy_kwargs={'dist_kwargs': {'neural_strength': Strength.SCALAR, 'cov_strength': Strength.DIAG, 'parameterization_type':
|
||||
ParametrizationType.NONE, 'enforce_positive_type': EnforcePositiveType.ABS, 'prob_squashing_type': ProbSquashingType.NONE}},
|
||||
verbose=0,
|
||||
tensorboard_log=root_path+"/logs_tb/" +
|
||||
env_name+"/ppo"+(['', '_sde'][use_sde])+"/",
|
||||
learning_rate=3e-4,
|
||||
learning_rate=3e-4, # 3e-4,
|
||||
gamma=0.99,
|
||||
gae_lambda=0.95,
|
||||
normalize_advantage=True,
|
||||
ent_coef=0.02, # 0.1
|
||||
ent_coef=0.1, # 0.1
|
||||
vf_coef=0.5,
|
||||
use_sde=use_sde, # False
|
||||
clip_range=1 # 0.2,
|
||||
|
Loading…
Reference in New Issue
Block a user