Removed old files (moved into sb3_trl/)
This commit is contained in:
parent
9199536166
commit
e363021ed3
@ -1,15 +0,0 @@
|
|||||||
# Copyright (c) 2021 Robert Bosch GmbH
|
|
||||||
# Author: Fabian Otto
|
|
||||||
#
|
|
||||||
# This program is free software: you can redistribute it and/or modify
|
|
||||||
# it under the terms of the GNU Affero General Public License as published
|
|
||||||
# by the Free Software Foundation, either version 3 of the License, or
|
|
||||||
# (at your option) any later version.
|
|
||||||
#
|
|
||||||
# This program is distributed in the hope that it will be useful,
|
|
||||||
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
||||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
||||||
# GNU Affero General Public License for more details.
|
|
||||||
#
|
|
||||||
# You should have received a copy of the GNU Affero General Public License
|
|
||||||
# along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
@ -1,374 +0,0 @@
|
|||||||
# Copyright (c) 2021 Robert Bosch GmbH
|
|
||||||
# Author: Fabian Otto
|
|
||||||
#
|
|
||||||
# This program is free software: you can redistribute it and/or modify
|
|
||||||
# it under the terms of the GNU Affero General Public License as published
|
|
||||||
# by the Free Software Foundation, either version 3 of the License, or
|
|
||||||
# (at your option) any later version.
|
|
||||||
#
|
|
||||||
# This program is distributed in the hope that it will be useful,
|
|
||||||
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
||||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
||||||
# GNU Affero General Public License for more details.
|
|
||||||
#
|
|
||||||
# You should have received a copy of the GNU Affero General Public License
|
|
||||||
# along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
||||||
|
|
||||||
import copy
|
|
||||||
import math
|
|
||||||
import torch as ch
|
|
||||||
from typing import Tuple, Union
|
|
||||||
|
|
||||||
from trust_region_projections.models.policy.abstract_gaussian_policy import AbstractGaussianPolicy
|
|
||||||
from trust_region_projections.utils.network_utils import get_optimizer
|
|
||||||
from trust_region_projections.utils.projection_utils import gaussian_kl, get_entropy_schedule
|
|
||||||
from trust_region_projections.utils.torch_utils import generate_minibatches, select_batch, tensorize
|
|
||||||
|
|
||||||
|
|
||||||
def entropy_inequality_projection(policy: AbstractGaussianPolicy, p: Tuple[ch.Tensor, ch.Tensor],
|
|
||||||
beta: Union[float, ch.Tensor]):
|
|
||||||
"""
|
|
||||||
Projects std to satisfy an entropy INEQUALITY constraint.
|
|
||||||
Args:
|
|
||||||
policy: policy instance
|
|
||||||
p: current distribution
|
|
||||||
beta: target entropy for EACH std or general bound for all stds
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
projected std that satisfies the entropy bound
|
|
||||||
"""
|
|
||||||
mean, std = p
|
|
||||||
k = std.shape[-1]
|
|
||||||
batch_shape = std.shape[:-2]
|
|
||||||
|
|
||||||
ent = policy.entropy(p)
|
|
||||||
mask = ent < beta
|
|
||||||
|
|
||||||
# if nothing has to be projected skip computation
|
|
||||||
if (~mask).all():
|
|
||||||
return p
|
|
||||||
|
|
||||||
alpha = ch.ones(batch_shape, dtype=std.dtype, device=std.device)
|
|
||||||
alpha[mask] = ch.exp((beta[mask] - ent[mask]) / k)
|
|
||||||
|
|
||||||
proj_std = ch.einsum('ijk,i->ijk', std, alpha)
|
|
||||||
return mean, ch.where(mask[..., None, None], proj_std, std)
|
|
||||||
|
|
||||||
|
|
||||||
def entropy_equality_projection(policy: AbstractGaussianPolicy, p: Tuple[ch.Tensor, ch.Tensor],
|
|
||||||
beta: Union[float, ch.Tensor]):
|
|
||||||
"""
|
|
||||||
Projects std to satisfy an entropy EQUALITY constraint.
|
|
||||||
Args:
|
|
||||||
policy: policy instance
|
|
||||||
p: current distribution
|
|
||||||
beta: target entropy for EACH std or general bound for all stds
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
projected std that satisfies the entropy bound
|
|
||||||
"""
|
|
||||||
mean, std = p
|
|
||||||
k = std.shape[-1]
|
|
||||||
|
|
||||||
ent = policy.entropy(p)
|
|
||||||
alpha = ch.exp((beta - ent) / k)
|
|
||||||
proj_std = ch.einsum('ijk,i->ijk', std, alpha)
|
|
||||||
return mean, proj_std
|
|
||||||
|
|
||||||
|
|
||||||
def mean_projection(mean: ch.Tensor, old_mean: ch.Tensor, maha: ch.Tensor, eps: ch.Tensor):
|
|
||||||
"""
|
|
||||||
Projects the mean based on the Mahalanobis objective and trust region.
|
|
||||||
Args:
|
|
||||||
mean: current mean vectors
|
|
||||||
old_mean: old mean vectors
|
|
||||||
maha: Mahalanobis distance between the two mean vectors
|
|
||||||
eps: trust region bound
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
projected mean that satisfies the trust region
|
|
||||||
"""
|
|
||||||
batch_shape = mean.shape[:-1]
|
|
||||||
mask = maha > eps
|
|
||||||
|
|
||||||
################################################################################################################
|
|
||||||
# mean projection maha
|
|
||||||
|
|
||||||
# if nothing has to be projected skip computation
|
|
||||||
if mask.any():
|
|
||||||
omega = ch.ones(batch_shape, dtype=mean.dtype, device=mean.device)
|
|
||||||
omega[mask] = ch.sqrt(maha[mask] / eps) - 1.
|
|
||||||
omega = ch.max(-omega, omega)[..., None]
|
|
||||||
|
|
||||||
m = (mean + omega * old_mean) / (1 + omega + 1e-16)
|
|
||||||
proj_mean = ch.where(mask[..., None], m, mean)
|
|
||||||
else:
|
|
||||||
proj_mean = mean
|
|
||||||
|
|
||||||
return proj_mean
|
|
||||||
|
|
||||||
|
|
||||||
class BaseProjectionLayer(object):
|
|
||||||
|
|
||||||
def __init__(self,
|
|
||||||
proj_type: str = "",
|
|
||||||
mean_bound: float = 0.03,
|
|
||||||
cov_bound: float = 1e-3,
|
|
||||||
trust_region_coeff: float = 0.0,
|
|
||||||
scale_prec: bool = True,
|
|
||||||
|
|
||||||
entropy_schedule: Union[None, str] = None,
|
|
||||||
action_dim: Union[None, int] = None,
|
|
||||||
total_train_steps: Union[None, int] = None,
|
|
||||||
target_entropy: float = 0.0,
|
|
||||||
temperature: float = 0.5,
|
|
||||||
entropy_eq: bool = False,
|
|
||||||
entropy_first: bool = False,
|
|
||||||
|
|
||||||
do_regression: bool = False,
|
|
||||||
regression_iters: int = 1000,
|
|
||||||
regression_lr: int = 3e-4,
|
|
||||||
optimizer_type_reg: str = "adam",
|
|
||||||
|
|
||||||
cpu: bool = True,
|
|
||||||
dtype: ch.dtype = ch.float32,
|
|
||||||
):
|
|
||||||
|
|
||||||
"""
|
|
||||||
Base projection layer, which can be used to compute metrics for non-projection approaches.
|
|
||||||
Args:
|
|
||||||
proj_type: Which type of projection to use. None specifies no projection and uses the TRPO objective.
|
|
||||||
mean_bound: projection bound for the step size w.r.t. mean
|
|
||||||
cov_bound: projection bound for the step size w.r.t. covariance matrix
|
|
||||||
trust_region_coeff: Coefficient for projection regularization loss term.
|
|
||||||
scale_prec: If true used mahalanobis distance for projections instead of euclidean with Sigma_old^-1.
|
|
||||||
entropy_schedule: Schedule type for entropy projection, one of 'linear', 'exp', None.
|
|
||||||
action_dim: number of action dimensions to scale exp decay correctly.
|
|
||||||
total_train_steps: total number of training steps to compute appropriate decay over time.
|
|
||||||
target_entropy: projection bound for the entropy of the covariance matrix
|
|
||||||
temperature: temperature decay for exponential entropy bound
|
|
||||||
entropy_eq: Use entropy equality constraints.
|
|
||||||
entropy_first: Project entropy before trust region.
|
|
||||||
do_regression: Conduct additional regression steps after the the policy steps to match projection and policy.
|
|
||||||
regression_iters: Number of regression steps.
|
|
||||||
regression_lr: Regression learning rate.
|
|
||||||
optimizer_type_reg: Optimizer for regression.
|
|
||||||
cpu: Compute on CPU only.
|
|
||||||
dtype: Data type to use, either of float32 or float64. The later might be necessary for higher
|
|
||||||
dimensions in order to learn the full covariance.
|
|
||||||
"""
|
|
||||||
|
|
||||||
# projection and bounds
|
|
||||||
self.proj_type = proj_type
|
|
||||||
self.mean_bound = tensorize(mean_bound, cpu=cpu, dtype=dtype)
|
|
||||||
self.cov_bound = tensorize(cov_bound, cpu=cpu, dtype=dtype)
|
|
||||||
self.trust_region_coeff = trust_region_coeff
|
|
||||||
self.scale_prec = scale_prec
|
|
||||||
|
|
||||||
# projection utils
|
|
||||||
assert (action_dim and total_train_steps) if entropy_schedule else True
|
|
||||||
self.entropy_proj = entropy_equality_projection if entropy_eq else entropy_inequality_projection
|
|
||||||
self.entropy_schedule = get_entropy_schedule(entropy_schedule, total_train_steps, dim=action_dim)
|
|
||||||
self.target_entropy = tensorize(target_entropy, cpu=cpu, dtype=dtype)
|
|
||||||
self.entropy_first = entropy_first
|
|
||||||
self.entropy_eq = entropy_eq
|
|
||||||
self.temperature = temperature
|
|
||||||
self._initial_entropy = None
|
|
||||||
|
|
||||||
# regression
|
|
||||||
self.do_regression = do_regression
|
|
||||||
self.regression_iters = regression_iters
|
|
||||||
self.lr_reg = regression_lr
|
|
||||||
self.optimizer_type_reg = optimizer_type_reg
|
|
||||||
|
|
||||||
def __call__(self, policy, p: Tuple[ch.Tensor, ch.Tensor], q, step, *args, **kwargs):
|
|
||||||
# entropy_bound = self.policy.entropy(q) - self.target_entropy
|
|
||||||
entropy_bound = self.entropy_schedule(self.initial_entropy, self.target_entropy, self.temperature,
|
|
||||||
step) * p[0].new_ones(p[0].shape[0])
|
|
||||||
return self._projection(policy, p, q, self.mean_bound, self.cov_bound, entropy_bound, **kwargs)
|
|
||||||
|
|
||||||
def _trust_region_projection(self, policy: AbstractGaussianPolicy, p: Tuple[ch.Tensor, ch.Tensor],
|
|
||||||
q: Tuple[ch.Tensor, ch.Tensor], eps: ch.Tensor, eps_cov: ch.Tensor, **kwargs):
|
|
||||||
"""
|
|
||||||
Hook for implementing the specific trust region projection
|
|
||||||
Args:
|
|
||||||
policy: policy instance
|
|
||||||
p: current distribution
|
|
||||||
q: old distribution
|
|
||||||
eps: mean trust region bound
|
|
||||||
eps_cov: covariance trust region bound
|
|
||||||
**kwargs:
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
projected
|
|
||||||
"""
|
|
||||||
return p
|
|
||||||
|
|
||||||
# @final
|
|
||||||
def _projection(self, policy: AbstractGaussianPolicy, p: Tuple[ch.Tensor, ch.Tensor],
|
|
||||||
q: Tuple[ch.Tensor, ch.Tensor], eps: ch.Tensor, eps_cov: ch.Tensor, beta: ch.Tensor, **kwargs):
|
|
||||||
"""
|
|
||||||
Template method with hook _trust_region_projection() to encode specific functionality.
|
|
||||||
(Optional) entropy projection is executed before or after as specified by entropy_first.
|
|
||||||
Do not override this. For Python >= 3.8 you can use the @final decorator to enforce not overwriting.
|
|
||||||
Args:
|
|
||||||
policy: policy instance
|
|
||||||
p: current distribution
|
|
||||||
q: old distribution
|
|
||||||
eps: mean trust region bound
|
|
||||||
eps_cov: covariance trust region bound
|
|
||||||
beta: entropy bound
|
|
||||||
**kwargs:
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
projected mean, projected std
|
|
||||||
"""
|
|
||||||
|
|
||||||
####################################################################################################################
|
|
||||||
# entropy projection in the beginning
|
|
||||||
if self.entropy_first:
|
|
||||||
p = self.entropy_proj(policy, p, beta)
|
|
||||||
|
|
||||||
####################################################################################################################
|
|
||||||
# trust region projection for mean and cov bounds
|
|
||||||
proj_mean, proj_std = self._trust_region_projection(policy, p, q, eps, eps_cov, **kwargs)
|
|
||||||
|
|
||||||
####################################################################################################################
|
|
||||||
# entropy projection in the end
|
|
||||||
if self.entropy_first:
|
|
||||||
return proj_mean, proj_std
|
|
||||||
|
|
||||||
return self.entropy_proj(policy, (proj_mean, proj_std), beta)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def initial_entropy(self):
|
|
||||||
return self._initial_entropy
|
|
||||||
|
|
||||||
@initial_entropy.setter
|
|
||||||
def initial_entropy(self, entropy):
|
|
||||||
if self.initial_entropy is None:
|
|
||||||
self._initial_entropy = entropy
|
|
||||||
|
|
||||||
def trust_region_value(self, policy, p, q):
|
|
||||||
"""
|
|
||||||
Computes the KL divergence between two Gaussian distributions p and q.
|
|
||||||
Args:
|
|
||||||
policy: policy instance
|
|
||||||
p: current distribution
|
|
||||||
q: old distribution
|
|
||||||
Returns:
|
|
||||||
Mean and covariance part of the trust region metric.
|
|
||||||
"""
|
|
||||||
return gaussian_kl(policy, p, q)
|
|
||||||
|
|
||||||
def get_trust_region_loss(self, policy: AbstractGaussianPolicy, p: Tuple[ch.Tensor, ch.Tensor],
|
|
||||||
proj_p: Tuple[ch.Tensor, ch.Tensor]):
|
|
||||||
"""
|
|
||||||
Compute the trust region loss to ensure policy output and projection stay close.
|
|
||||||
Args:
|
|
||||||
policy: policy instance
|
|
||||||
proj_p: projected distribution
|
|
||||||
p: predicted distribution from network output
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
trust region loss
|
|
||||||
"""
|
|
||||||
p_target = (proj_p[0].detach(), proj_p[1].detach())
|
|
||||||
mean_diff, cov_diff = self.trust_region_value(policy, p, p_target)
|
|
||||||
|
|
||||||
delta_loss = (mean_diff + cov_diff if policy.contextual_std else mean_diff).mean()
|
|
||||||
|
|
||||||
return delta_loss * self.trust_region_coeff
|
|
||||||
|
|
||||||
def compute_metrics(self, policy, p, q) -> dict:
|
|
||||||
"""
|
|
||||||
Returns dict with constraint metrics.
|
|
||||||
Args:
|
|
||||||
policy: policy instance
|
|
||||||
p: current distribution
|
|
||||||
q: old distribution
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
dict with constraint metrics
|
|
||||||
"""
|
|
||||||
with ch.no_grad():
|
|
||||||
entropy_old = policy.entropy(q)
|
|
||||||
entropy = policy.entropy(p)
|
|
||||||
mean_kl, cov_kl = gaussian_kl(policy, p, q)
|
|
||||||
kl = mean_kl + cov_kl
|
|
||||||
|
|
||||||
mean_diff, cov_diff = self.trust_region_value(policy, p, q)
|
|
||||||
|
|
||||||
combined_constraint = mean_diff + cov_diff
|
|
||||||
entropy_diff = entropy_old - entropy
|
|
||||||
|
|
||||||
return {'kl': kl.detach().mean(),
|
|
||||||
'constraint': combined_constraint.mean(),
|
|
||||||
'mean_constraint': mean_diff.mean(),
|
|
||||||
'cov_constraint': cov_diff.mean(),
|
|
||||||
'entropy': entropy.mean(),
|
|
||||||
'entropy_diff': entropy_diff.mean(),
|
|
||||||
'kl_max': kl.max(),
|
|
||||||
'constraint_max': combined_constraint.max(),
|
|
||||||
'mean_constraint_max': mean_diff.max(),
|
|
||||||
'cov_constraint_max': cov_diff.max(),
|
|
||||||
'entropy_max': entropy.max(),
|
|
||||||
'entropy_diff_max': entropy_diff.max()
|
|
||||||
}
|
|
||||||
|
|
||||||
def trust_region_regression(self, policy: AbstractGaussianPolicy, obs: ch.Tensor, q: Tuple[ch.Tensor, ch.Tensor],
|
|
||||||
n_minibatches: int, global_steps: int):
|
|
||||||
"""
|
|
||||||
Take additional regression steps to match projection output and policy output.
|
|
||||||
The policy parameters are updated in-place.
|
|
||||||
Args:
|
|
||||||
policy: policy instance
|
|
||||||
obs: collected observations from trajectories
|
|
||||||
q: old distributions
|
|
||||||
n_minibatches: split the rollouts into n_minibatches.
|
|
||||||
global_steps: current number of steps, required for projection
|
|
||||||
Returns:
|
|
||||||
dict with mean of regession loss
|
|
||||||
"""
|
|
||||||
|
|
||||||
if not self.do_regression:
|
|
||||||
return {}
|
|
||||||
|
|
||||||
policy_unprojected = copy.deepcopy(policy)
|
|
||||||
optim_reg = get_optimizer(self.optimizer_type_reg, policy_unprojected.parameters(), learning_rate=self.lr_reg)
|
|
||||||
optim_reg.reset()
|
|
||||||
|
|
||||||
reg_losses = obs.new_tensor(0.)
|
|
||||||
|
|
||||||
# get current projected values --> targets for regression
|
|
||||||
p_flat = policy(obs)
|
|
||||||
p_target = self(policy, p_flat, q, global_steps)
|
|
||||||
|
|
||||||
for _ in range(self.regression_iters):
|
|
||||||
batch_indices = generate_minibatches(obs.shape[0], n_minibatches)
|
|
||||||
|
|
||||||
# Minibatches SGD
|
|
||||||
for indices in batch_indices:
|
|
||||||
batch = select_batch(indices, obs, p_target[0], p_target[1])
|
|
||||||
b_obs, b_target_mean, b_target_std = batch
|
|
||||||
proj_p = (b_target_mean.detach(), b_target_std.detach())
|
|
||||||
|
|
||||||
p = policy_unprojected(b_obs)
|
|
||||||
|
|
||||||
# invert scaling with coeff here as we do not have to balance with other losses
|
|
||||||
loss = self.get_trust_region_loss(policy, p, proj_p) / self.trust_region_coeff
|
|
||||||
|
|
||||||
optim_reg.zero_grad()
|
|
||||||
loss.backward()
|
|
||||||
optim_reg.step()
|
|
||||||
reg_losses += loss.detach()
|
|
||||||
|
|
||||||
policy.load_state_dict(policy_unprojected.state_dict())
|
|
||||||
|
|
||||||
if not policy.contextual_std:
|
|
||||||
# set policy with projection value.
|
|
||||||
# In non-contextual cases we have only one cov, so the projection is the same.
|
|
||||||
policy.set_std(p_target[1][0])
|
|
||||||
|
|
||||||
steps = self.regression_iters * (math.ceil(obs.shape[0] / n_minibatches))
|
|
||||||
return {"regression_loss": (reg_losses / steps).detach()}
|
|
@ -1,97 +0,0 @@
|
|||||||
# Copyright (c) 2021 Robert Bosch GmbH
|
|
||||||
# Author: Fabian Otto
|
|
||||||
#
|
|
||||||
# This program is free software: you can redistribute it and/or modify
|
|
||||||
# it under the terms of the GNU Affero General Public License as published
|
|
||||||
# by the Free Software Foundation, either version 3 of the License, or
|
|
||||||
# (at your option) any later version.
|
|
||||||
#
|
|
||||||
# This program is distributed in the hope that it will be useful,
|
|
||||||
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
||||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
||||||
# GNU Affero General Public License for more details.
|
|
||||||
#
|
|
||||||
# You should have received a copy of the GNU Affero General Public License
|
|
||||||
# along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
||||||
|
|
||||||
import torch as ch
|
|
||||||
from typing import Tuple
|
|
||||||
|
|
||||||
from trust_region_projections.models.policy.abstract_gaussian_policy import AbstractGaussianPolicy
|
|
||||||
from trust_region_projections.projections.base_projection_layer import BaseProjectionLayer, mean_projection
|
|
||||||
from trust_region_projections.utils.projection_utils import gaussian_frobenius
|
|
||||||
|
|
||||||
|
|
||||||
class FrobeniusProjectionLayer(BaseProjectionLayer):
|
|
||||||
|
|
||||||
def _trust_region_projection(self, policy: AbstractGaussianPolicy, p: Tuple[ch.Tensor, ch.Tensor],
|
|
||||||
q: Tuple[ch.Tensor, ch.Tensor], eps: ch.Tensor, eps_cov: ch.Tensor, **kwargs):
|
|
||||||
"""
|
|
||||||
Runs Frobenius projection layer and constructs cholesky of covariance
|
|
||||||
|
|
||||||
Args:
|
|
||||||
policy: policy instance
|
|
||||||
p: current distribution
|
|
||||||
q: old distribution
|
|
||||||
eps: (modified) kl bound/ kl bound for mean part
|
|
||||||
eps_cov: (modified) kl bound for cov part
|
|
||||||
beta: (modified) entropy bound
|
|
||||||
**kwargs:
|
|
||||||
Returns: mean, cov cholesky
|
|
||||||
"""
|
|
||||||
|
|
||||||
mean, chol = p
|
|
||||||
old_mean, old_chol = q
|
|
||||||
batch_shape = mean.shape[:-1]
|
|
||||||
|
|
||||||
####################################################################################################################
|
|
||||||
# precompute mean and cov part of frob projection, which are used for the projection.
|
|
||||||
mean_part, cov_part, cov, cov_old = gaussian_frobenius(policy, p, q, self.scale_prec, True)
|
|
||||||
|
|
||||||
################################################################################################################
|
|
||||||
# mean projection maha/euclidean
|
|
||||||
|
|
||||||
proj_mean = mean_projection(mean, old_mean, mean_part, eps)
|
|
||||||
|
|
||||||
################################################################################################################
|
|
||||||
# cov projection frobenius
|
|
||||||
|
|
||||||
cov_mask = cov_part > eps_cov
|
|
||||||
|
|
||||||
if cov_mask.any():
|
|
||||||
# alpha = ch.where(fro_norm_sq > eps_cov, ch.sqrt(fro_norm_sq / eps_cov) - 1., ch.tensor(1.))
|
|
||||||
eta = ch.ones(batch_shape, dtype=chol.dtype, device=chol.device)
|
|
||||||
eta[cov_mask] = ch.sqrt(cov_part[cov_mask] / eps_cov) - 1.
|
|
||||||
eta = ch.max(-eta, eta)
|
|
||||||
|
|
||||||
new_cov = (cov + ch.einsum('i,ijk->ijk', eta, cov_old)) / (1. + eta + 1e-16)[..., None, None]
|
|
||||||
proj_chol = ch.where(cov_mask[..., None, None], ch.cholesky(new_cov), chol)
|
|
||||||
else:
|
|
||||||
proj_chol = chol
|
|
||||||
|
|
||||||
return proj_mean, proj_chol
|
|
||||||
|
|
||||||
def trust_region_value(self, policy, p, q):
|
|
||||||
"""
|
|
||||||
Computes the Frobenius metric between two Gaussian distributions p and q.
|
|
||||||
Args:
|
|
||||||
policy: policy instance
|
|
||||||
p: current distribution
|
|
||||||
q: old distribution
|
|
||||||
Returns:
|
|
||||||
mean and covariance part of Frobenius metric
|
|
||||||
"""
|
|
||||||
return gaussian_frobenius(policy, p, q, self.scale_prec)
|
|
||||||
|
|
||||||
def get_trust_region_loss(self, policy: AbstractGaussianPolicy, p: Tuple[ch.Tensor, ch.Tensor],
|
|
||||||
proj_p: Tuple[ch.Tensor, ch.Tensor]):
|
|
||||||
|
|
||||||
mean_diff, _ = self.trust_region_value(policy, p, proj_p)
|
|
||||||
if policy.contextual_std:
|
|
||||||
# Compute MSE here, because we found the Frobenius norm tends to generate values that explode for the cov
|
|
||||||
cov_diff = (p[1] - proj_p[1]).pow(2).sum([-1, -2])
|
|
||||||
delta_loss = (mean_diff + cov_diff).mean()
|
|
||||||
else:
|
|
||||||
delta_loss = mean_diff.mean()
|
|
||||||
|
|
||||||
return delta_loss * self.trust_region_coeff
|
|
@ -1,101 +0,0 @@
|
|||||||
import cpp_projection
|
|
||||||
import numpy as np
|
|
||||||
import torch as ch
|
|
||||||
from typing import Any, Tuple
|
|
||||||
|
|
||||||
from trust_region_projections.models.policy.abstract_gaussian_policy import AbstractGaussianPolicy
|
|
||||||
from trust_region_projections.projections.base_projection_layer import BaseProjectionLayer, mean_projection
|
|
||||||
from trust_region_projections.utils.projection_utils import gaussian_kl
|
|
||||||
from trust_region_projections.utils.torch_utils import get_numpy
|
|
||||||
|
|
||||||
|
|
||||||
class KLProjectionLayer(BaseProjectionLayer):
|
|
||||||
|
|
||||||
def _trust_region_projection(self, policy: AbstractGaussianPolicy, p: Tuple[ch.Tensor, ch.Tensor],
|
|
||||||
q: Tuple[ch.Tensor, ch.Tensor], eps: ch.Tensor, eps_cov: ch.Tensor, **kwargs):
|
|
||||||
"""
|
|
||||||
Runs KL projection layer and constructs cholesky of covariance
|
|
||||||
Args:
|
|
||||||
policy: policy instance
|
|
||||||
p: current distribution
|
|
||||||
q: old distribution
|
|
||||||
eps: (modified) kl bound/ kl bound for mean part
|
|
||||||
eps_cov: (modified) kl bound for cov part
|
|
||||||
**kwargs:
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
projected mean, projected cov cholesky
|
|
||||||
"""
|
|
||||||
mean, std = p
|
|
||||||
old_mean, old_std = q
|
|
||||||
|
|
||||||
if not policy.contextual_std:
|
|
||||||
# only project first one to reduce number of numerical optimizations
|
|
||||||
std = std[:1]
|
|
||||||
old_std = old_std[:1]
|
|
||||||
|
|
||||||
################################################################################################################
|
|
||||||
# project mean with closed form
|
|
||||||
mean_part, _ = gaussian_kl(policy, p, q)
|
|
||||||
proj_mean = mean_projection(mean, old_mean, mean_part, eps)
|
|
||||||
|
|
||||||
cov = policy.covariance(std)
|
|
||||||
old_cov = policy.covariance(old_std)
|
|
||||||
|
|
||||||
if policy.is_diag:
|
|
||||||
proj_cov = KLProjectionGradFunctionDiagCovOnly.apply(cov.diagonal(dim1=-2, dim2=-1),
|
|
||||||
old_cov.diagonal(dim1=-2, dim2=-1),
|
|
||||||
eps_cov)
|
|
||||||
proj_std = proj_cov.sqrt().diag_embed()
|
|
||||||
else:
|
|
||||||
raise NotImplementedError("The KL projection currently does not support full covariance matrices.")
|
|
||||||
|
|
||||||
if not policy.contextual_std:
|
|
||||||
# scale first std back to batchsize
|
|
||||||
proj_std = proj_std.expand(mean.shape[0], -1, -1)
|
|
||||||
|
|
||||||
return proj_mean, proj_std
|
|
||||||
|
|
||||||
|
|
||||||
class KLProjectionGradFunctionDiagCovOnly(ch.autograd.Function):
|
|
||||||
projection_op = None
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def get_projection_op(batch_shape, dim, max_eval=100):
|
|
||||||
if not KLProjectionGradFunctionDiagCovOnly.projection_op:
|
|
||||||
KLProjectionGradFunctionDiagCovOnly.projection_op = \
|
|
||||||
cpp_projection.BatchedDiagCovOnlyProjection(batch_shape, dim, max_eval=max_eval)
|
|
||||||
return KLProjectionGradFunctionDiagCovOnly.projection_op
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def forward(ctx: Any, *args: Any, **kwargs: Any) -> Any:
|
|
||||||
std, old_std, eps_cov = args
|
|
||||||
|
|
||||||
batch_shape = std.shape[0]
|
|
||||||
dim = std.shape[-1]
|
|
||||||
|
|
||||||
cov_np = get_numpy(std)
|
|
||||||
old_std = get_numpy(old_std)
|
|
||||||
eps = get_numpy(eps_cov) * np.ones(batch_shape)
|
|
||||||
|
|
||||||
# p_op = cpp_projection.BatchedDiagCovOnlyProjection(batch_shape, dim)
|
|
||||||
# ctx.proj = projection_op
|
|
||||||
|
|
||||||
p_op = KLProjectionGradFunctionDiagCovOnly.get_projection_op(batch_shape, dim)
|
|
||||||
ctx.proj = p_op
|
|
||||||
|
|
||||||
proj_std = p_op.forward(eps, old_std, cov_np)
|
|
||||||
|
|
||||||
return std.new(proj_std)
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def backward(ctx: Any, *grad_outputs: Any) -> Any:
|
|
||||||
projection_op = ctx.proj
|
|
||||||
d_std, = grad_outputs
|
|
||||||
|
|
||||||
d_std_np = get_numpy(d_std)
|
|
||||||
d_std_np = np.atleast_2d(d_std_np)
|
|
||||||
df_stds = projection_op.backward(d_std_np)
|
|
||||||
df_stds = np.atleast_2d(df_stds)
|
|
||||||
|
|
||||||
return d_std.new(df_stds), None, None
|
|
@ -1,233 +0,0 @@
|
|||||||
# Copyright (c) 2021 Robert Bosch GmbH
|
|
||||||
# Author: Fabian Otto
|
|
||||||
#
|
|
||||||
# This program is free software: you can redistribute it and/or modify
|
|
||||||
# it under the terms of the GNU Affero General Public License as published
|
|
||||||
# by the Free Software Foundation, either version 3 of the License, or
|
|
||||||
# (at your option) any later version.
|
|
||||||
#
|
|
||||||
# This program is distributed in the hope that it will be useful,
|
|
||||||
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
||||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
||||||
# GNU Affero General Public License for more details.
|
|
||||||
#
|
|
||||||
# You should have received a copy of the GNU Affero General Public License
|
|
||||||
# along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
||||||
|
|
||||||
import logging
|
|
||||||
|
|
||||||
import copy
|
|
||||||
import numpy as np
|
|
||||||
import torch as ch
|
|
||||||
from typing import Tuple, Union
|
|
||||||
|
|
||||||
from trust_region_projections.utils.projection_utils import gaussian_kl
|
|
||||||
from trust_region_projections.models.policy.abstract_gaussian_policy import AbstractGaussianPolicy
|
|
||||||
from trust_region_projections.projections.base_projection_layer import BaseProjectionLayer
|
|
||||||
from trust_region_projections.utils.torch_utils import torch_batched_trace
|
|
||||||
|
|
||||||
logger = logging.getLogger("papi_projection")
|
|
||||||
|
|
||||||
|
|
||||||
class PAPIProjection(BaseProjectionLayer):
|
|
||||||
|
|
||||||
def __init__(self,
|
|
||||||
proj_type: str = "",
|
|
||||||
mean_bound: float = 0.015,
|
|
||||||
cov_bound: float = 0.0,
|
|
||||||
|
|
||||||
entropy_eq: bool = False,
|
|
||||||
entropy_first: bool = True,
|
|
||||||
|
|
||||||
cpu: bool = True,
|
|
||||||
dtype: ch.dtype = ch.float32,
|
|
||||||
**kwargs
|
|
||||||
):
|
|
||||||
|
|
||||||
"""
|
|
||||||
PAPI projection, which can be used after each training epoch to satisfy the trust regions.
|
|
||||||
Args:
|
|
||||||
proj_type: Which type of projection to use. None specifies no projection and uses the TRPO objective.
|
|
||||||
mean_bound: projection bound for the step size,
|
|
||||||
PAPI only has a joint KL constraint, mean and cov bound are summed for this bound.
|
|
||||||
cov_bound: projection bound for the step size,
|
|
||||||
PAPI only has a joint KL constraint, mean and cov bound are summed for this bound.
|
|
||||||
entropy_eq: Use entropy equality constraints.
|
|
||||||
entropy_first: Project entropy before trust region.
|
|
||||||
cpu: Compute on CPU only.
|
|
||||||
dtype: Data type to use, either of float32 or float64. The later might be necessary for higher
|
|
||||||
dimensions in order to learn the full covariance.
|
|
||||||
"""
|
|
||||||
|
|
||||||
assert entropy_first
|
|
||||||
super().__init__(proj_type, mean_bound, cov_bound, 0.0, False, None, None, None, 0.0, 0.0, entropy_eq,
|
|
||||||
entropy_first, cpu, dtype)
|
|
||||||
|
|
||||||
self.last_policies = []
|
|
||||||
|
|
||||||
def __call__(self, policy, p, q, step=0, *args, **kwargs):
|
|
||||||
if kwargs.get("obs"):
|
|
||||||
self._papi_steps(policy, q, **kwargs)
|
|
||||||
else:
|
|
||||||
return p
|
|
||||||
|
|
||||||
def _trust_region_projection(self, policy: AbstractGaussianPolicy, p: Tuple[ch.Tensor, ch.Tensor],
|
|
||||||
q: Tuple[ch.Tensor, ch.Tensor], eps: Union[ch.Tensor, float],
|
|
||||||
eps_cov: Union[ch.Tensor, float], **kwargs):
|
|
||||||
"""
|
|
||||||
runs papi projection layer and constructs sqrt of covariance
|
|
||||||
Args:
|
|
||||||
policy: policy instance
|
|
||||||
p: current distribution
|
|
||||||
q: old distribution
|
|
||||||
eps: (modified) kl bound/ kl bound for mean part
|
|
||||||
eps_cov: (modified) kl bound for cov part
|
|
||||||
**kwargs:
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
mean, cov sqrt
|
|
||||||
"""
|
|
||||||
|
|
||||||
mean, chol = p
|
|
||||||
old_mean, old_chol = q
|
|
||||||
intermed_mean = kwargs.get('intermed_mean')
|
|
||||||
|
|
||||||
dtype = mean.dtype
|
|
||||||
device = mean.device
|
|
||||||
|
|
||||||
dim = mean.shape[-1]
|
|
||||||
|
|
||||||
################################################################################################################
|
|
||||||
# Precompute basic matrices
|
|
||||||
|
|
||||||
# Joint bound
|
|
||||||
eps += eps_cov
|
|
||||||
|
|
||||||
I = ch.eye(dim, dtype=dtype, device=device)
|
|
||||||
old_precision = ch.cholesky_solve(I, old_chol)[0]
|
|
||||||
logdet_old = policy.log_determinant(old_chol)
|
|
||||||
cov = policy.covariance(chol)
|
|
||||||
|
|
||||||
################################################################################################################
|
|
||||||
# compute expected KL
|
|
||||||
maha_part, cov_part = gaussian_kl(policy, p, q)
|
|
||||||
maha_part = maha_part.mean()
|
|
||||||
cov_part = cov_part.mean()
|
|
||||||
|
|
||||||
if intermed_mean is not None:
|
|
||||||
maha_intermediate = 0.5 * policy.maha(intermed_mean, old_mean, old_chol).mean()
|
|
||||||
mm = ch.min(maha_part, maha_intermediate)
|
|
||||||
|
|
||||||
################################################################################################################
|
|
||||||
# matrix rotation/rescaling projection
|
|
||||||
if maha_part + cov_part > eps + 1e-6:
|
|
||||||
old_cov = policy.covariance(old_chol)
|
|
||||||
|
|
||||||
maha_delta = eps if intermed_mean is None else (eps - mm)
|
|
||||||
eta_rot = maha_delta / ch.max(maha_part + cov_part, ch.tensor(1e-16, dtype=dtype, device=device))
|
|
||||||
new_cov = (1 - eta_rot) * old_cov + eta_rot * cov
|
|
||||||
proj_chol = ch.cholesky(new_cov)
|
|
||||||
|
|
||||||
# recompute covariance part of KL for new chol
|
|
||||||
trace_term = 0.5 * (torch_batched_trace(old_precision @ new_cov) - dim).mean() # rotation difference
|
|
||||||
entropy_diff = 0.5 * (logdet_old - policy.log_determinant(proj_chol)).mean()
|
|
||||||
|
|
||||||
cov_part = trace_term + entropy_diff
|
|
||||||
|
|
||||||
else:
|
|
||||||
proj_chol = chol
|
|
||||||
|
|
||||||
################################################################################################################
|
|
||||||
# mean interpolation projection
|
|
||||||
if maha_part + cov_part > eps + 1e-6:
|
|
||||||
|
|
||||||
if intermed_mean is not None:
|
|
||||||
a = 0.5 * policy.maha(mean, intermed_mean, old_chol).mean()
|
|
||||||
b = 0.5 * ((mean - intermed_mean) @ old_precision @ (intermed_mean - old_mean).T).mean()
|
|
||||||
c = maha_intermediate - ch.max(eps - cov_part, ch.tensor(0., dtype=dtype, device=device))
|
|
||||||
eta_mean = (-b + ch.sqrt(ch.max(b * b - a * c, ch.tensor(1e-16, dtype=dtype, device=device)))) / \
|
|
||||||
ch.max(a, ch.tensor(1e-16, dtype=dtype, device=device))
|
|
||||||
else:
|
|
||||||
eta_mean = ch.sqrt(
|
|
||||||
ch.max(eps - cov_part, ch.tensor(1e-16, dtype=dtype, device=device)) /
|
|
||||||
ch.max(maha_part, ch.tensor(1e-16, dtype=dtype, device=device)))
|
|
||||||
else:
|
|
||||||
eta_mean = ch.tensor(1., dtype=dtype, device=device)
|
|
||||||
|
|
||||||
return eta_mean, proj_chol
|
|
||||||
|
|
||||||
def _papi_steps(self, policy: AbstractGaussianPolicy, q: Tuple[ch.Tensor, ch.Tensor], obs: ch.Tensor, lr_schedule,
|
|
||||||
lr_schedule_vf=None):
|
|
||||||
"""
|
|
||||||
Take PAPI steps after PPO finished its steps. Policy parameters are updated in-place.
|
|
||||||
Args:
|
|
||||||
policy: policy instance
|
|
||||||
q: old distribution
|
|
||||||
obs: collected observations from trajectories
|
|
||||||
lr_schedule: lr schedule for policy
|
|
||||||
lr_schedule_vf: lr schedule for vf
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
|
|
||||||
"""
|
|
||||||
assert not policy.contextual_std
|
|
||||||
|
|
||||||
# save latest policy in history
|
|
||||||
self.last_policies.append(copy.deepcopy(policy))
|
|
||||||
|
|
||||||
################################################################################################################
|
|
||||||
# policy backtracking: out of last n policies and current one find one that satisfies the kl constraint
|
|
||||||
|
|
||||||
intermed_policy = None
|
|
||||||
n_backtracks = 0
|
|
||||||
|
|
||||||
for i, pi in enumerate(reversed(self.last_policies)):
|
|
||||||
p_prime = pi(obs)
|
|
||||||
mean_part, cov_part = pi.kl_divergence(p_prime, q)
|
|
||||||
if (mean_part + cov_part).mean() <= self.mean_bound + self.cov_bound:
|
|
||||||
intermed_policy = pi
|
|
||||||
n_backtracks = i
|
|
||||||
break
|
|
||||||
|
|
||||||
################################################################################################################
|
|
||||||
# LR update
|
|
||||||
|
|
||||||
# reduce learning rate when appropriate policy not within the last 4 epochs
|
|
||||||
if n_backtracks >= 4 or intermed_policy is None:
|
|
||||||
# Linear learning rate annealing
|
|
||||||
lr_schedule.step()
|
|
||||||
if lr_schedule_vf:
|
|
||||||
lr_schedule_vf.step()
|
|
||||||
|
|
||||||
if intermed_policy is None:
|
|
||||||
# pop last policy and make it current one, as the updated one was poor
|
|
||||||
# do not keep last policy in history, otherwise we could stack the same policy multiple times.
|
|
||||||
if len(self.last_policies) >= 1:
|
|
||||||
policy.load_state_dict(self.last_policies.pop().state_dict())
|
|
||||||
logger.warning(f"No suitable policy found in backtracking of {len(self.last_policies)} policies.")
|
|
||||||
return
|
|
||||||
|
|
||||||
################################################################################################################
|
|
||||||
# PAPI iterations
|
|
||||||
|
|
||||||
# We assume only non contextual covariances here, therefore we only need to project for one
|
|
||||||
q = (q[0], q[1][:1]) # (means, covs[:1])
|
|
||||||
|
|
||||||
# This is A from Alg. 2 [Akrour et al., 2019]
|
|
||||||
intermed_weight = intermed_policy.get_last_layer().detach().clone()
|
|
||||||
# This is A @ phi(s)
|
|
||||||
intermed_mean = p_prime[0].detach().clone()
|
|
||||||
|
|
||||||
entropy = policy.entropy(q)
|
|
||||||
entropy_bound = obs.new_tensor([-np.inf]) if entropy / self.initial_entropy > 0.5 \
|
|
||||||
else entropy - (self.mean_bound + self.cov_bound)
|
|
||||||
|
|
||||||
for _ in range(20):
|
|
||||||
eta, proj_chol = self._projection(intermed_policy, (p_prime[0], p_prime[1][:1]), q,
|
|
||||||
self.mean_bound, self.cov_bound, entropy_bound,
|
|
||||||
intermed_mean=intermed_mean)
|
|
||||||
intermed_policy.papi_weight_update(eta, intermed_weight)
|
|
||||||
intermed_policy.set_std(proj_chol[0])
|
|
||||||
p_prime = intermed_policy(obs)
|
|
||||||
|
|
||||||
policy.load_state_dict(intermed_policy.state_dict())
|
|
@ -1,54 +0,0 @@
|
|||||||
# Copyright (c) 2021 Robert Bosch GmbH
|
|
||||||
# Author: Fabian Otto
|
|
||||||
#
|
|
||||||
# This program is free software: you can redistribute it and/or modify
|
|
||||||
# it under the terms of the GNU Affero General Public License as published
|
|
||||||
# by the Free Software Foundation, either version 3 of the License, or
|
|
||||||
# (at your option) any later version.
|
|
||||||
#
|
|
||||||
# This program is distributed in the hope that it will be useful,
|
|
||||||
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
||||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
||||||
# GNU Affero General Public License for more details.
|
|
||||||
#
|
|
||||||
# You should have received a copy of the GNU Affero General Public License
|
|
||||||
# along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
||||||
|
|
||||||
from trust_region_projections.projections.base_projection_layer import BaseProjectionLayer
|
|
||||||
from trust_region_projections.projections.frob_projection_layer import FrobeniusProjectionLayer
|
|
||||||
from trust_region_projections.projections.kl_projection_layer import KLProjectionLayer
|
|
||||||
from trust_region_projections.projections.papi_projection import PAPIProjection
|
|
||||||
from trust_region_projections.projections.w2_projection_layer import WassersteinProjectionLayer
|
|
||||||
|
|
||||||
|
|
||||||
def get_projection_layer(proj_type: str = "", **kwargs) -> BaseProjectionLayer:
|
|
||||||
"""
|
|
||||||
Factory to generate the projection layers for all projections.
|
|
||||||
Args:
|
|
||||||
proj_type: One of None/' ', 'ppo', 'papi', 'w2', 'w2_non_com', 'frob', 'kl', or 'entropy'
|
|
||||||
**kwargs: arguments for projection layer
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
|
|
||||||
"""
|
|
||||||
if not proj_type or proj_type.isspace() or proj_type.lower() in ["ppo", "sac", "td3", "mpo", "entropy"]:
|
|
||||||
return BaseProjectionLayer(proj_type, **kwargs)
|
|
||||||
|
|
||||||
elif proj_type.lower() == "w2":
|
|
||||||
return WassersteinProjectionLayer(proj_type, **kwargs)
|
|
||||||
|
|
||||||
elif proj_type.lower() == "frob":
|
|
||||||
return FrobeniusProjectionLayer(proj_type, **kwargs)
|
|
||||||
|
|
||||||
elif proj_type.lower() == "kl":
|
|
||||||
return KLProjectionLayer(proj_type, **kwargs)
|
|
||||||
|
|
||||||
elif proj_type.lower() == "papi":
|
|
||||||
# papi has a different approach compared to our projections.
|
|
||||||
# It has to be applied after the training with PPO.
|
|
||||||
return PAPIProjection(proj_type, **kwargs)
|
|
||||||
|
|
||||||
else:
|
|
||||||
raise ValueError(
|
|
||||||
f"Invalid projection type {proj_type}."
|
|
||||||
f" Choose one of None/' ', 'ppo', 'papi', 'w2', 'w2_non_com', 'frob', 'kl', or 'entropy'.")
|
|
@ -1,84 +0,0 @@
|
|||||||
# Copyright (c) 2021 Robert Bosch GmbH
|
|
||||||
# Author: Fabian Otto
|
|
||||||
#
|
|
||||||
# This program is free software: you can redistribute it and/or modify
|
|
||||||
# it under the terms of the GNU Affero General Public License as published
|
|
||||||
# by the Free Software Foundation, either version 3 of the License, or
|
|
||||||
# (at your option) any later version.
|
|
||||||
#
|
|
||||||
# This program is distributed in the hope that it will be useful,
|
|
||||||
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
||||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
||||||
# GNU Affero General Public License for more details.
|
|
||||||
#
|
|
||||||
# You should have received a copy of the GNU Affero General Public License
|
|
||||||
# along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
||||||
|
|
||||||
import torch as ch
|
|
||||||
from typing import Tuple
|
|
||||||
|
|
||||||
from trust_region_projections.models.policy.abstract_gaussian_policy import AbstractGaussianPolicy
|
|
||||||
from trust_region_projections.projections.base_projection_layer import BaseProjectionLayer, mean_projection
|
|
||||||
from trust_region_projections.utils.projection_utils import gaussian_wasserstein_commutative
|
|
||||||
|
|
||||||
|
|
||||||
class WassersteinProjectionLayer(BaseProjectionLayer):
|
|
||||||
|
|
||||||
def _trust_region_projection(self, policy: AbstractGaussianPolicy, p: Tuple[ch.Tensor, ch.Tensor],
|
|
||||||
q: Tuple[ch.Tensor, ch.Tensor], eps: ch.Tensor, eps_cov: ch.Tensor, **kwargs):
|
|
||||||
"""
|
|
||||||
Runs commutative Wasserstein projection layer and constructs sqrt of covariance
|
|
||||||
Args:
|
|
||||||
policy: policy instance
|
|
||||||
p: current distribution
|
|
||||||
q: old distribution
|
|
||||||
eps: (modified) kl bound/ kl bound for mean part
|
|
||||||
eps_cov: (modified) kl bound for cov part
|
|
||||||
**kwargs:
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
mean, cov sqrt
|
|
||||||
"""
|
|
||||||
mean, sqrt = p
|
|
||||||
old_mean, old_sqrt = q
|
|
||||||
batch_shape = mean.shape[:-1]
|
|
||||||
|
|
||||||
####################################################################################################################
|
|
||||||
# precompute mean and cov part of W2, which are used for the projection.
|
|
||||||
# Both parts differ based on precision scaling.
|
|
||||||
# If activated, the mean part is the maha distance and the cov has a more complex term in the inner parenthesis.
|
|
||||||
mean_part, cov_part = gaussian_wasserstein_commutative(policy, p, q, self.scale_prec)
|
|
||||||
|
|
||||||
####################################################################################################################
|
|
||||||
# project mean (w/ or w/o precision scaling)
|
|
||||||
proj_mean = mean_projection(mean, old_mean, mean_part, eps)
|
|
||||||
|
|
||||||
####################################################################################################################
|
|
||||||
# project covariance (w/ or w/o precision scaling)
|
|
||||||
|
|
||||||
cov_mask = cov_part > eps_cov
|
|
||||||
|
|
||||||
if cov_mask.any():
|
|
||||||
# gradient issue with ch.where, it executes both paths and gives NaN gradient.
|
|
||||||
eta = ch.ones(batch_shape, dtype=sqrt.dtype, device=sqrt.device)
|
|
||||||
eta[cov_mask] = ch.sqrt(cov_part[cov_mask] / eps_cov) - 1.
|
|
||||||
eta = ch.max(-eta, eta)
|
|
||||||
|
|
||||||
new_sqrt = (sqrt + ch.einsum('i,ijk->ijk', eta, old_sqrt)) / (1. + eta + 1e-16)[..., None, None]
|
|
||||||
proj_sqrt = ch.where(cov_mask[..., None, None], new_sqrt, sqrt)
|
|
||||||
else:
|
|
||||||
proj_sqrt = sqrt
|
|
||||||
|
|
||||||
return proj_mean, proj_sqrt
|
|
||||||
|
|
||||||
def trust_region_value(self, policy, p, q):
|
|
||||||
"""
|
|
||||||
Computes the Wasserstein distance between two Gaussian distributions p and q.
|
|
||||||
Args:
|
|
||||||
policy: policy instance
|
|
||||||
p: current distribution
|
|
||||||
q: old distribution
|
|
||||||
Returns:
|
|
||||||
mean and covariance part of Wasserstein distance
|
|
||||||
"""
|
|
||||||
return gaussian_wasserstein_commutative(policy, p, q, scale_prec=self.scale_prec)
|
|
@ -1,2 +0,0 @@
|
|||||||
from sb3.trl_pg.policies import CnnPolicy, MlpPolicy, MultiInputPolicy
|
|
||||||
from sb3.trl_pg.trl_pg import TRL_PG
|
|
@ -1,7 +0,0 @@
|
|||||||
# This file is here just to define MlpPolicy/CnnPolicy
|
|
||||||
# that work for TRL_PG
|
|
||||||
from stable_baselines3.common.policies import ActorCriticCnnPolicy, ActorCriticPolicy, MultiInputActorCriticPolicy
|
|
||||||
|
|
||||||
MlpPolicy = ActorCriticPolicy
|
|
||||||
CnnPolicy = ActorCriticCnnPolicy
|
|
||||||
MultiInputPolicy = MultiInputActorCriticPolicy
|
|
338
trl_pg/trl_pg.py
338
trl_pg/trl_pg.py
@ -1,338 +0,0 @@
|
|||||||
import warnings
|
|
||||||
from typing import Any, Dict, Optional, Type, Union
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import torch as th
|
|
||||||
from gym import spaces
|
|
||||||
from torch.nn import functional as F
|
|
||||||
|
|
||||||
from stable_baselines3.common.on_policy_algorithm import OnPolicyAlgorithm
|
|
||||||
from stable_baselines3.common.policies import ActorCriticCnnPolicy, ActorCriticPolicy, BasePolicy, MultiInputActorCriticPolicy
|
|
||||||
from stable_baselines3.common.type_aliases import GymEnv, MaybeCallback, Schedule
|
|
||||||
from stable_baselines3.common.utils import explained_variance, get_schedule_fn
|
|
||||||
|
|
||||||
|
|
||||||
class TRL_PG(OnPolicyAlgorithm):
|
|
||||||
"""
|
|
||||||
Differential Trust Region Layer (TRL) for Policy Gradient (PG)
|
|
||||||
|
|
||||||
Paper: https://arxiv.org/abs/2101.09207
|
|
||||||
Code: This implementation borrows (/steals most) code from SB3's PPO implementation https://github.com/DLR-RM/stable-baselines3/blob/master/stable_baselines3/ppo/ppo.py
|
|
||||||
The implementation of the TRL-specific parts borrows from https://github.com/boschresearch/trust-region-layers/blob/main/trust_region_projections/algorithms/pg/pg.py
|
|
||||||
|
|
||||||
:param policy: The policy model to use (MlpPolicy, CnnPolicy, ...)
|
|
||||||
:param env: The environment to learn from (if registered in Gym, can be str)
|
|
||||||
:param learning_rate: The learning rate, it can be a function
|
|
||||||
of the current progress remaining (from 1 to 0)
|
|
||||||
:param n_steps: The number of steps to run for each environment per update
|
|
||||||
(i.e. rollout buffer size is n_steps * n_envs where n_envs is number of environment copies running in parallel)
|
|
||||||
NOTE: n_steps * n_envs must be greater than 1 (because of the advantage normalization)
|
|
||||||
See https://github.com/pytorch/pytorch/issues/29372
|
|
||||||
:param batch_size: Minibatch size
|
|
||||||
:param n_epochs: Number of epoch when optimizing the surrogate loss
|
|
||||||
:param gamma: Discount factor
|
|
||||||
:param gae_lambda: Factor for trade-off of bias vs variance for Generalized Advantage Estimator
|
|
||||||
:param clip_range: Clipping parameter, it can be a function of the current progress
|
|
||||||
remaining (from 1 to 0).
|
|
||||||
:param clip_range_vf: Clipping parameter for the value function,
|
|
||||||
it can be a function of the current progress remaining (from 1 to 0).
|
|
||||||
This is a parameter specific to the OpenAI implementation. If None is passed (default),
|
|
||||||
no clipping will be done on the value function.
|
|
||||||
IMPORTANT: this clipping depends on the reward scaling.
|
|
||||||
:param normalize_advantage: Whether to normalize or not the advantage
|
|
||||||
:param ent_coef: Entropy coefficient for the loss calculation
|
|
||||||
:param vf_coef: Value function coefficient for the loss calculation
|
|
||||||
:param max_grad_norm: The maximum value for the gradient clipping
|
|
||||||
:param use_sde: Whether to use generalized State Dependent Exploration (gSDE)
|
|
||||||
instead of action noise exploration (default: False)
|
|
||||||
:param sde_sample_freq: Sample a new noise matrix every n steps when using gSDE
|
|
||||||
Default: -1 (only sample at the beginning of the rollout)
|
|
||||||
:param target_kl: Limit the KL divergence between updates,
|
|
||||||
because the clipping is not enough to prevent large update
|
|
||||||
see issue #213 (cf https://github.com/hill-a/stable-baselines/issues/213)
|
|
||||||
By default, there is no limit on the kl div.
|
|
||||||
:param tensorboard_log: the log location for tensorboard (if None, no logging)
|
|
||||||
:param create_eval_env: Whether to create a second environment that will be
|
|
||||||
used for evaluating the agent periodically. (Only available when passing string for the environment)
|
|
||||||
:param policy_kwargs: additional arguments to be passed to the policy on creation
|
|
||||||
:param verbose: the verbosity level: 0 no output, 1 info, 2 debug
|
|
||||||
:param seed: Seed for the pseudo random generators
|
|
||||||
:param device: Device (cpu, cuda, ...) on which the code should be run.
|
|
||||||
Setting it to auto, the code will be run on the GPU if possible.
|
|
||||||
:param _init_setup_model: Whether or not to build the network at the creation of the instance
|
|
||||||
"""
|
|
||||||
|
|
||||||
policy_aliases: Dict[str, Type[BasePolicy]] = {
|
|
||||||
"MlpPolicy": ActorCriticPolicy,
|
|
||||||
"CnnPolicy": ActorCriticCnnPolicy,
|
|
||||||
"MultiInputPolicy": MultiInputActorCriticPolicy,
|
|
||||||
}
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
policy: Union[str, Type[ActorCriticPolicy]],
|
|
||||||
env: Union[GymEnv, str],
|
|
||||||
learning_rate: Union[float, Schedule] = 3e-4,
|
|
||||||
n_steps: int = 2048,
|
|
||||||
batch_size: int = 64,
|
|
||||||
n_epochs: int = 10,
|
|
||||||
gamma: float = 0.99,
|
|
||||||
gae_lambda: float = 0.95,
|
|
||||||
clip_range: Union[float, Schedule] = 0.2,
|
|
||||||
clip_range_vf: Union[None, float, Schedule] = None,
|
|
||||||
normalize_advantage: bool = True,
|
|
||||||
ent_coef: float = 0.0,
|
|
||||||
vf_coef: float = 0.5,
|
|
||||||
max_grad_norm: float = 0.5,
|
|
||||||
use_sde: bool = False,
|
|
||||||
sde_sample_freq: int = -1,
|
|
||||||
target_kl: Optional[float] = None,
|
|
||||||
tensorboard_log: Optional[str] = None,
|
|
||||||
create_eval_env: bool = False,
|
|
||||||
policy_kwargs: Optional[Dict[str, Any]] = None,
|
|
||||||
verbose: int = 0,
|
|
||||||
seed: Optional[int] = None,
|
|
||||||
device: Union[th.device, str] = "auto",
|
|
||||||
|
|
||||||
# Different from PPO:
|
|
||||||
projection: BaseProjectionLayer = None,
|
|
||||||
|
|
||||||
_init_setup_model: bool = True,
|
|
||||||
):
|
|
||||||
|
|
||||||
super().__init__(
|
|
||||||
policy,
|
|
||||||
env,
|
|
||||||
learning_rate=learning_rate,
|
|
||||||
n_steps=n_steps,
|
|
||||||
gamma=gamma,
|
|
||||||
gae_lambda=gae_lambda,
|
|
||||||
ent_coef=ent_coef,
|
|
||||||
vf_coef=vf_coef,
|
|
||||||
max_grad_norm=max_grad_norm,
|
|
||||||
use_sde=use_sde,
|
|
||||||
sde_sample_freq=sde_sample_freq,
|
|
||||||
tensorboard_log=tensorboard_log,
|
|
||||||
policy_kwargs=policy_kwargs,
|
|
||||||
verbose=verbose,
|
|
||||||
device=device,
|
|
||||||
create_eval_env=create_eval_env,
|
|
||||||
seed=seed,
|
|
||||||
_init_setup_model=False,
|
|
||||||
supported_action_spaces=(
|
|
||||||
spaces.Box,
|
|
||||||
spaces.Discrete,
|
|
||||||
spaces.MultiDiscrete,
|
|
||||||
spaces.MultiBinary,
|
|
||||||
),
|
|
||||||
)
|
|
||||||
|
|
||||||
# Sanity check, otherwise it will lead to noisy gradient and NaN
|
|
||||||
# because of the advantage normalization
|
|
||||||
if normalize_advantage:
|
|
||||||
assert (
|
|
||||||
batch_size > 1
|
|
||||||
), "`batch_size` must be greater than 1. See https://github.com/DLR-RM/stable-baselines3/issues/440"
|
|
||||||
|
|
||||||
if self.env is not None:
|
|
||||||
# Check that `n_steps * n_envs > 1` to avoid NaN
|
|
||||||
# when doing advantage normalization
|
|
||||||
buffer_size = self.env.num_envs * self.n_steps
|
|
||||||
assert (
|
|
||||||
buffer_size > 1
|
|
||||||
), f"`n_steps * n_envs` must be greater than 1. Currently n_steps={self.n_steps} and n_envs={self.env.num_envs}"
|
|
||||||
# Check that the rollout buffer size is a multiple of the mini-batch size
|
|
||||||
untruncated_batches = buffer_size // batch_size
|
|
||||||
if buffer_size % batch_size > 0:
|
|
||||||
warnings.warn(
|
|
||||||
f"You have specified a mini-batch size of {batch_size},"
|
|
||||||
f" but because the `RolloutBuffer` is of size `n_steps * n_envs = {buffer_size}`,"
|
|
||||||
f" after every {untruncated_batches} untruncated mini-batches,"
|
|
||||||
f" there will be a truncated mini-batch of size {buffer_size % batch_size}\n"
|
|
||||||
f"We recommend using a `batch_size` that is a factor of `n_steps * n_envs`.\n"
|
|
||||||
f"Info: (n_steps={self.n_steps} and n_envs={self.env.num_envs})"
|
|
||||||
)
|
|
||||||
self.batch_size = batch_size
|
|
||||||
self.n_epochs = n_epochs
|
|
||||||
self.clip_range = clip_range
|
|
||||||
self.clip_range_vf = clip_range_vf
|
|
||||||
self.normalize_advantage = normalize_advantage
|
|
||||||
self.target_kl = target_kl
|
|
||||||
|
|
||||||
# Different from PPO:
|
|
||||||
self.projection = projection
|
|
||||||
|
|
||||||
if _init_setup_model:
|
|
||||||
self._setup_model()
|
|
||||||
|
|
||||||
def _setup_model(self) -> None:
|
|
||||||
super()._setup_model()
|
|
||||||
|
|
||||||
# Initialize schedules for policy/value clipping
|
|
||||||
self.clip_range = get_schedule_fn(self.clip_range)
|
|
||||||
if self.clip_range_vf is not None:
|
|
||||||
if isinstance(self.clip_range_vf, (float, int)):
|
|
||||||
assert self.clip_range_vf > 0, "`clip_range_vf` must be positive, " "pass `None` to deactivate vf clipping"
|
|
||||||
|
|
||||||
self.clip_range_vf = get_schedule_fn(self.clip_range_vf)
|
|
||||||
|
|
||||||
def train(self) -> None:
|
|
||||||
"""
|
|
||||||
Update policy using the currently gathered rollout buffer.
|
|
||||||
"""
|
|
||||||
# Switch to train mode (this affects batch norm / dropout)
|
|
||||||
self.policy.set_training_mode(True)
|
|
||||||
# Update optimizer learning rate
|
|
||||||
self._update_learning_rate(self.policy.optimizer)
|
|
||||||
# Compute current clip range
|
|
||||||
clip_range = self.clip_range(self._current_progress_remaining)
|
|
||||||
# Optional: clip range for the value function
|
|
||||||
if self.clip_range_vf is not None:
|
|
||||||
clip_range_vf = self.clip_range_vf(self._current_progress_remaining)
|
|
||||||
|
|
||||||
surrogate_losses = []
|
|
||||||
entropy_losses = []
|
|
||||||
trust_region_losses = []
|
|
||||||
pg_losses, value_losses = [], []
|
|
||||||
clip_fractions = []
|
|
||||||
|
|
||||||
continue_training = True
|
|
||||||
|
|
||||||
# train for n_epochs epochs
|
|
||||||
for epoch in range(self.n_epochs):
|
|
||||||
approx_kl_divs = []
|
|
||||||
# Do a complete pass on the rollout buffer
|
|
||||||
for rollout_data in self.rollout_buffer.get(self.batch_size):
|
|
||||||
actions = rollout_data.actions
|
|
||||||
if isinstance(self.action_space, spaces.Discrete):
|
|
||||||
# Convert discrete action from float to long
|
|
||||||
actions = rollout_data.actions.long().flatten()
|
|
||||||
|
|
||||||
# Re-sample the noise matrix because the log_std has changed
|
|
||||||
if self.use_sde:
|
|
||||||
self.policy.reset_noise(self.batch_size)
|
|
||||||
|
|
||||||
values, log_prob, entropy = self.policy.evaluate_actions(rollout_data.observations, actions)
|
|
||||||
values = values.flatten()
|
|
||||||
# Normalize advantage
|
|
||||||
advantages = rollout_data.advantages
|
|
||||||
if self.normalize_advantage:
|
|
||||||
advantages = (advantages - advantages.mean()) / (advantages.std() + 1e-8)
|
|
||||||
|
|
||||||
# ratio between old and new policy, should be one at the first iteration
|
|
||||||
ratio = th.exp(log_prob - rollout_data.old_log_prob)
|
|
||||||
|
|
||||||
# Difference from PPO: We renamed 'policy_loss' to 'surrogate_loss'
|
|
||||||
# clipped surrogate loss
|
|
||||||
surrogate_loss_1 = advantages * ratio
|
|
||||||
surrogate_loss_2 = advantages * th.clamp(ratio, 1 - clip_range, 1 + clip_range)
|
|
||||||
surrogate_loss = -th.min(policy_loss_1, policy_loss_2).mean()
|
|
||||||
|
|
||||||
surrogate_losses.append(surrogate_loss.item())
|
|
||||||
|
|
||||||
# Logging
|
|
||||||
pg_losses.append(policy_loss.item())
|
|
||||||
clip_fraction = th.mean((th.abs(ratio - 1) > clip_range).float()).item()
|
|
||||||
clip_fractions.append(clip_fraction)
|
|
||||||
|
|
||||||
if self.clip_range_vf is None:
|
|
||||||
# No clipping
|
|
||||||
values_pred = values
|
|
||||||
else:
|
|
||||||
# Clip the different between old and new value
|
|
||||||
# NOTE: this depends on the reward scaling
|
|
||||||
values_pred = rollout_data.old_values + th.clamp(
|
|
||||||
values - rollout_data.old_values, -clip_range_vf, clip_range_vf
|
|
||||||
)
|
|
||||||
# Value loss using the TD(gae_lambda) target
|
|
||||||
value_loss = F.mse_loss(rollout_data.returns, values_pred)
|
|
||||||
value_losses.append(value_loss.item())
|
|
||||||
|
|
||||||
# Entropy loss favor exploration
|
|
||||||
if entropy is None:
|
|
||||||
# Approximate entropy when no analytical form
|
|
||||||
entropy_loss = -th.mean(-log_prob)
|
|
||||||
else:
|
|
||||||
entropy_loss = -th.mean(entropy)
|
|
||||||
|
|
||||||
entropy_losses.append(entropy_loss.item())
|
|
||||||
|
|
||||||
# Difference to PPO: Added trust_region_loss; policy_loss includes entropy_loss + trust_region_loss
|
|
||||||
trust_region_loss = self.projection.get_trust_region_loss()#TODO: params
|
|
||||||
|
|
||||||
trust_region_losses.append(trust_region_loss.item())
|
|
||||||
|
|
||||||
policy_loss = surrogate_loss + self.ent_coef * entropy_loss + trust_region_loss
|
|
||||||
|
|
||||||
loss = policy_loss + self.vf_coef * value_loss
|
|
||||||
|
|
||||||
# Calculate approximate form of reverse KL Divergence for early stopping
|
|
||||||
# see issue #417: https://github.com/DLR-RM/stable-baselines3/issues/417
|
|
||||||
# and discussion in PR #419: https://github.com/DLR-RM/stable-baselines3/pull/419
|
|
||||||
# and Schulman blog: http://joschu.net/blog/kl-approx.html
|
|
||||||
with th.no_grad():
|
|
||||||
log_ratio = log_prob - rollout_data.old_log_prob
|
|
||||||
approx_kl_div = th.mean((th.exp(log_ratio) - 1) - log_ratio).cpu().numpy()
|
|
||||||
approx_kl_divs.append(approx_kl_div)
|
|
||||||
|
|
||||||
if self.target_kl is not None and approx_kl_div > 1.5 * self.target_kl:
|
|
||||||
continue_training = False
|
|
||||||
if self.verbose >= 1:
|
|
||||||
print(f"Early stopping at step {epoch} due to reaching max kl: {approx_kl_div:.2f}")
|
|
||||||
break
|
|
||||||
|
|
||||||
# Optimization step
|
|
||||||
self.policy.optimizer.zero_grad()
|
|
||||||
loss.backward()
|
|
||||||
# Clip grad norm
|
|
||||||
th.nn.utils.clip_grad_norm_(self.policy.parameters(), self.max_grad_norm)
|
|
||||||
self.policy.optimizer.step()
|
|
||||||
|
|
||||||
if not continue_training:
|
|
||||||
break
|
|
||||||
|
|
||||||
self._n_updates += self.n_epochs
|
|
||||||
explained_var = explained_variance(self.rollout_buffer.values.flatten(), self.rollout_buffer.returns.flatten())
|
|
||||||
|
|
||||||
# Logs
|
|
||||||
self.logger.record("train/surrogate_loss", np.mean(surrogate_losses))
|
|
||||||
self.logger.record("train/entropy_loss", np.mean(entropy_losses))
|
|
||||||
self.logger.record("train/trust_region_loss", np.mean(trust_region_losses))
|
|
||||||
self.logger.record("train/policy_gradient_loss", np.mean(pg_losses))
|
|
||||||
self.logger.record("train/value_loss", np.mean(value_losses))
|
|
||||||
self.logger.record("train/approx_kl", np.mean(approx_kl_divs))
|
|
||||||
self.logger.record("train/clip_fraction", np.mean(clip_fractions))
|
|
||||||
self.logger.record("train/loss", loss.item())
|
|
||||||
self.logger.record("train/explained_variance", explained_var)
|
|
||||||
if hasattr(self.policy, "log_std"):
|
|
||||||
self.logger.record("train/std", th.exp(self.policy.log_std).mean().item())
|
|
||||||
|
|
||||||
self.logger.record("train/n_updates", self._n_updates, exclude="tensorboard")
|
|
||||||
self.logger.record("train/clip_range", clip_range)
|
|
||||||
if self.clip_range_vf is not None:
|
|
||||||
self.logger.record("train/clip_range_vf", clip_range_vf)
|
|
||||||
|
|
||||||
def learn(
|
|
||||||
self,
|
|
||||||
total_timesteps: int,
|
|
||||||
callback: MaybeCallback = None,
|
|
||||||
log_interval: int = 1,
|
|
||||||
eval_env: Optional[GymEnv] = None,
|
|
||||||
eval_freq: int = -1,
|
|
||||||
n_eval_episodes: int = 5,
|
|
||||||
tb_log_name: str = "PPO",
|
|
||||||
eval_log_path: Optional[str] = None,
|
|
||||||
reset_num_timesteps: bool = True,
|
|
||||||
) -> "PPO":
|
|
||||||
|
|
||||||
return super().learn(
|
|
||||||
total_timesteps=total_timesteps,
|
|
||||||
callback=callback,
|
|
||||||
log_interval=log_interval,
|
|
||||||
eval_env=eval_env,
|
|
||||||
eval_freq=eval_freq,
|
|
||||||
n_eval_episodes=n_eval_episodes,
|
|
||||||
tb_log_name=tb_log_name,
|
|
||||||
eval_log_path=eval_log_path,
|
|
||||||
reset_num_timesteps=reset_num_timesteps,
|
|
||||||
)
|
|
@ -1,2 +0,0 @@
|
|||||||
from sb3_trl.trl_sac.policies import CnnPolicy, MlpPolicy, MultiInputPolicy
|
|
||||||
from sb3_trl.trl_sac.trl_sac import TRL_SAC
|
|
@ -1,516 +0,0 @@
|
|||||||
import warnings
|
|
||||||
from typing import Any, Dict, List, Optional, Tuple, Type, Union
|
|
||||||
|
|
||||||
import gym
|
|
||||||
import torch as th
|
|
||||||
from torch import nn
|
|
||||||
|
|
||||||
from stable_baselines3.common.distributions import SquashedDiagGaussianDistribution, StateDependentNoiseDistribution
|
|
||||||
from stable_baselines3.common.policies import BasePolicy, ContinuousCritic
|
|
||||||
from stable_baselines3.common.preprocessing import get_action_dim
|
|
||||||
from stable_baselines3.common.torch_layers import (
|
|
||||||
BaseFeaturesExtractor,
|
|
||||||
CombinedExtractor,
|
|
||||||
FlattenExtractor,
|
|
||||||
NatureCNN,
|
|
||||||
create_mlp,
|
|
||||||
get_actor_critic_arch,
|
|
||||||
)
|
|
||||||
from stable_baselines3.common.type_aliases import Schedule
|
|
||||||
|
|
||||||
# CAP the standard deviation of the actor
|
|
||||||
LOG_STD_MAX = 2
|
|
||||||
LOG_STD_MIN = -20
|
|
||||||
|
|
||||||
|
|
||||||
class Actor(BasePolicy):
|
|
||||||
"""
|
|
||||||
Actor network (policy) for SAC.
|
|
||||||
|
|
||||||
:param observation_space: Obervation space
|
|
||||||
:param action_space: Action space
|
|
||||||
:param net_arch: Network architecture
|
|
||||||
:param features_extractor: Network to extract features
|
|
||||||
(a CNN when using images, a nn.Flatten() layer otherwise)
|
|
||||||
:param features_dim: Number of features
|
|
||||||
:param activation_fn: Activation function
|
|
||||||
:param use_sde: Whether to use State Dependent Exploration or not
|
|
||||||
:param log_std_init: Initial value for the log standard deviation
|
|
||||||
:param full_std: Whether to use (n_features x n_actions) parameters
|
|
||||||
for the std instead of only (n_features,) when using gSDE.
|
|
||||||
:param sde_net_arch: Network architecture for extracting features
|
|
||||||
when using gSDE. If None, the latent features from the policy will be used.
|
|
||||||
Pass an empty list to use the states as features.
|
|
||||||
:param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure
|
|
||||||
a positive standard deviation (cf paper). It allows to keep variance
|
|
||||||
above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.
|
|
||||||
:param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.
|
|
||||||
:param normalize_images: Whether to normalize images or not,
|
|
||||||
dividing by 255.0 (True by default)
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
observation_space: gym.spaces.Space,
|
|
||||||
action_space: gym.spaces.Space,
|
|
||||||
net_arch: List[int],
|
|
||||||
features_extractor: nn.Module,
|
|
||||||
features_dim: int,
|
|
||||||
activation_fn: Type[nn.Module] = nn.ReLU,
|
|
||||||
use_sde: bool = False,
|
|
||||||
log_std_init: float = -3,
|
|
||||||
full_std: bool = True,
|
|
||||||
sde_net_arch: Optional[List[int]] = None,
|
|
||||||
use_expln: bool = False,
|
|
||||||
clip_mean: float = 2.0,
|
|
||||||
normalize_images: bool = True,
|
|
||||||
):
|
|
||||||
super().__init__(
|
|
||||||
observation_space,
|
|
||||||
action_space,
|
|
||||||
features_extractor=features_extractor,
|
|
||||||
normalize_images=normalize_images,
|
|
||||||
squash_output=True,
|
|
||||||
)
|
|
||||||
|
|
||||||
# Save arguments to re-create object at loading
|
|
||||||
self.use_sde = use_sde
|
|
||||||
self.sde_features_extractor = None
|
|
||||||
self.net_arch = net_arch
|
|
||||||
self.features_dim = features_dim
|
|
||||||
self.activation_fn = activation_fn
|
|
||||||
self.log_std_init = log_std_init
|
|
||||||
self.sde_net_arch = sde_net_arch
|
|
||||||
self.use_expln = use_expln
|
|
||||||
self.full_std = full_std
|
|
||||||
self.clip_mean = clip_mean
|
|
||||||
|
|
||||||
if sde_net_arch is not None:
|
|
||||||
warnings.warn("sde_net_arch is deprecated and will be removed in SB3 v2.4.0.", DeprecationWarning)
|
|
||||||
|
|
||||||
action_dim = get_action_dim(self.action_space)
|
|
||||||
latent_pi_net = create_mlp(features_dim, -1, net_arch, activation_fn)
|
|
||||||
self.latent_pi = nn.Sequential(*latent_pi_net)
|
|
||||||
last_layer_dim = net_arch[-1] if len(net_arch) > 0 else features_dim
|
|
||||||
|
|
||||||
if self.use_sde:
|
|
||||||
self.action_dist = StateDependentNoiseDistribution(
|
|
||||||
action_dim, full_std=full_std, use_expln=use_expln, learn_features=True, squash_output=True
|
|
||||||
)
|
|
||||||
self.mu, self.log_std = self.action_dist.proba_distribution_net(
|
|
||||||
latent_dim=last_layer_dim, latent_sde_dim=last_layer_dim, log_std_init=log_std_init
|
|
||||||
)
|
|
||||||
# Avoid numerical issues by limiting the mean of the Gaussian
|
|
||||||
# to be in [-clip_mean, clip_mean]
|
|
||||||
if clip_mean > 0.0:
|
|
||||||
self.mu = nn.Sequential(self.mu, nn.Hardtanh(min_val=-clip_mean, max_val=clip_mean))
|
|
||||||
else:
|
|
||||||
self.action_dist = SquashedDiagGaussianDistribution(action_dim)
|
|
||||||
self.mu = nn.Linear(last_layer_dim, action_dim)
|
|
||||||
self.log_std = nn.Linear(last_layer_dim, action_dim)
|
|
||||||
|
|
||||||
def _get_constructor_parameters(self) -> Dict[str, Any]:
|
|
||||||
data = super()._get_constructor_parameters()
|
|
||||||
|
|
||||||
data.update(
|
|
||||||
dict(
|
|
||||||
net_arch=self.net_arch,
|
|
||||||
features_dim=self.features_dim,
|
|
||||||
activation_fn=self.activation_fn,
|
|
||||||
use_sde=self.use_sde,
|
|
||||||
log_std_init=self.log_std_init,
|
|
||||||
full_std=self.full_std,
|
|
||||||
use_expln=self.use_expln,
|
|
||||||
features_extractor=self.features_extractor,
|
|
||||||
clip_mean=self.clip_mean,
|
|
||||||
)
|
|
||||||
)
|
|
||||||
return data
|
|
||||||
|
|
||||||
def get_std(self) -> th.Tensor:
|
|
||||||
"""
|
|
||||||
Retrieve the standard deviation of the action distribution.
|
|
||||||
Only useful when using gSDE.
|
|
||||||
It corresponds to ``th.exp(log_std)`` in the normal case,
|
|
||||||
but is slightly different when using ``expln`` function
|
|
||||||
(cf StateDependentNoiseDistribution doc).
|
|
||||||
|
|
||||||
:return:
|
|
||||||
"""
|
|
||||||
msg = "get_std() is only available when using gSDE"
|
|
||||||
assert isinstance(self.action_dist, StateDependentNoiseDistribution), msg
|
|
||||||
return self.action_dist.get_std(self.log_std)
|
|
||||||
|
|
||||||
def reset_noise(self, batch_size: int = 1) -> None:
|
|
||||||
"""
|
|
||||||
Sample new weights for the exploration matrix, when using gSDE.
|
|
||||||
|
|
||||||
:param batch_size:
|
|
||||||
"""
|
|
||||||
msg = "reset_noise() is only available when using gSDE"
|
|
||||||
assert isinstance(self.action_dist, StateDependentNoiseDistribution), msg
|
|
||||||
self.action_dist.sample_weights(self.log_std, batch_size=batch_size)
|
|
||||||
|
|
||||||
def get_action_dist_params(self, obs: th.Tensor) -> Tuple[th.Tensor, th.Tensor, Dict[str, th.Tensor]]:
|
|
||||||
"""
|
|
||||||
Get the parameters for the action distribution.
|
|
||||||
|
|
||||||
:param obs:
|
|
||||||
:return:
|
|
||||||
Mean, standard deviation and optional keyword arguments.
|
|
||||||
"""
|
|
||||||
features = self.extract_features(obs)
|
|
||||||
latent_pi = self.latent_pi(features)
|
|
||||||
mean_actions = self.mu(latent_pi)
|
|
||||||
|
|
||||||
if self.use_sde:
|
|
||||||
return mean_actions, self.log_std, dict(latent_sde=latent_pi)
|
|
||||||
# Unstructured exploration (Original implementation)
|
|
||||||
log_std = self.log_std(latent_pi)
|
|
||||||
# Original Implementation to cap the standard deviation
|
|
||||||
log_std = th.clamp(log_std, LOG_STD_MIN, LOG_STD_MAX)
|
|
||||||
return mean_actions, log_std, {}
|
|
||||||
|
|
||||||
def forward(self, obs: th.Tensor, deterministic: bool = False) -> th.Tensor:
|
|
||||||
mean_actions, log_std, kwargs = self.get_action_dist_params(obs)
|
|
||||||
# Note: the action is squashed
|
|
||||||
return self.action_dist.actions_from_params(mean_actions, log_std, deterministic=deterministic, **kwargs)
|
|
||||||
|
|
||||||
def action_log_prob(self, obs: th.Tensor) -> Tuple[th.Tensor, th.Tensor]:
|
|
||||||
mean_actions, log_std, kwargs = self.get_action_dist_params(obs)
|
|
||||||
# return action and associated log prob
|
|
||||||
return self.action_dist.log_prob_from_params(mean_actions, log_std, **kwargs)
|
|
||||||
|
|
||||||
def _predict(self, observation: th.Tensor, deterministic: bool = False) -> th.Tensor:
|
|
||||||
return self(observation, deterministic)
|
|
||||||
|
|
||||||
|
|
||||||
class SACPolicy(BasePolicy):
|
|
||||||
"""
|
|
||||||
Policy class (with both actor and critic) for SAC.
|
|
||||||
|
|
||||||
:param observation_space: Observation space
|
|
||||||
:param action_space: Action space
|
|
||||||
:param lr_schedule: Learning rate schedule (could be constant)
|
|
||||||
:param net_arch: The specification of the policy and value networks.
|
|
||||||
:param activation_fn: Activation function
|
|
||||||
:param use_sde: Whether to use State Dependent Exploration or not
|
|
||||||
:param log_std_init: Initial value for the log standard deviation
|
|
||||||
:param sde_net_arch: Network architecture for extracting features
|
|
||||||
when using gSDE. If None, the latent features from the policy will be used.
|
|
||||||
Pass an empty list to use the states as features.
|
|
||||||
:param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure
|
|
||||||
a positive standard deviation (cf paper). It allows to keep variance
|
|
||||||
above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.
|
|
||||||
:param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.
|
|
||||||
:param features_extractor_class: Features extractor to use.
|
|
||||||
:param features_extractor_kwargs: Keyword arguments
|
|
||||||
to pass to the features extractor.
|
|
||||||
:param normalize_images: Whether to normalize images or not,
|
|
||||||
dividing by 255.0 (True by default)
|
|
||||||
:param optimizer_class: The optimizer to use,
|
|
||||||
``th.optim.Adam`` by default
|
|
||||||
:param optimizer_kwargs: Additional keyword arguments,
|
|
||||||
excluding the learning rate, to pass to the optimizer
|
|
||||||
:param n_critics: Number of critic networks to create.
|
|
||||||
:param share_features_extractor: Whether to share or not the features extractor
|
|
||||||
between the actor and the critic (this saves computation time)
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
observation_space: gym.spaces.Space,
|
|
||||||
action_space: gym.spaces.Space,
|
|
||||||
lr_schedule: Schedule,
|
|
||||||
net_arch: Optional[Union[List[int], Dict[str, List[int]]]] = None,
|
|
||||||
activation_fn: Type[nn.Module] = nn.ReLU,
|
|
||||||
use_sde: bool = False,
|
|
||||||
log_std_init: float = -3,
|
|
||||||
sde_net_arch: Optional[List[int]] = None,
|
|
||||||
use_expln: bool = False,
|
|
||||||
clip_mean: float = 2.0,
|
|
||||||
features_extractor_class: Type[BaseFeaturesExtractor] = FlattenExtractor,
|
|
||||||
features_extractor_kwargs: Optional[Dict[str, Any]] = None,
|
|
||||||
normalize_images: bool = True,
|
|
||||||
optimizer_class: Type[th.optim.Optimizer] = th.optim.Adam,
|
|
||||||
optimizer_kwargs: Optional[Dict[str, Any]] = None,
|
|
||||||
n_critics: int = 2,
|
|
||||||
share_features_extractor: bool = True,
|
|
||||||
):
|
|
||||||
super().__init__(
|
|
||||||
observation_space,
|
|
||||||
action_space,
|
|
||||||
features_extractor_class,
|
|
||||||
features_extractor_kwargs,
|
|
||||||
optimizer_class=optimizer_class,
|
|
||||||
optimizer_kwargs=optimizer_kwargs,
|
|
||||||
squash_output=True,
|
|
||||||
)
|
|
||||||
|
|
||||||
if net_arch is None:
|
|
||||||
if features_extractor_class == NatureCNN:
|
|
||||||
net_arch = []
|
|
||||||
else:
|
|
||||||
net_arch = [256, 256]
|
|
||||||
|
|
||||||
actor_arch, critic_arch = get_actor_critic_arch(net_arch)
|
|
||||||
|
|
||||||
self.net_arch = net_arch
|
|
||||||
self.activation_fn = activation_fn
|
|
||||||
self.net_args = {
|
|
||||||
"observation_space": self.observation_space,
|
|
||||||
"action_space": self.action_space,
|
|
||||||
"net_arch": actor_arch,
|
|
||||||
"activation_fn": self.activation_fn,
|
|
||||||
"normalize_images": normalize_images,
|
|
||||||
}
|
|
||||||
self.actor_kwargs = self.net_args.copy()
|
|
||||||
|
|
||||||
if sde_net_arch is not None:
|
|
||||||
warnings.warn("sde_net_arch is deprecated and will be removed in SB3 v2.4.0.", DeprecationWarning)
|
|
||||||
|
|
||||||
sde_kwargs = {
|
|
||||||
"use_sde": use_sde,
|
|
||||||
"log_std_init": log_std_init,
|
|
||||||
"use_expln": use_expln,
|
|
||||||
"clip_mean": clip_mean,
|
|
||||||
}
|
|
||||||
self.actor_kwargs.update(sde_kwargs)
|
|
||||||
self.critic_kwargs = self.net_args.copy()
|
|
||||||
self.critic_kwargs.update(
|
|
||||||
{
|
|
||||||
"n_critics": n_critics,
|
|
||||||
"net_arch": critic_arch,
|
|
||||||
"share_features_extractor": share_features_extractor,
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
self.actor, self.actor_target = None, None
|
|
||||||
self.critic, self.critic_target = None, None
|
|
||||||
self.share_features_extractor = share_features_extractor
|
|
||||||
|
|
||||||
self._build(lr_schedule)
|
|
||||||
|
|
||||||
def _build(self, lr_schedule: Schedule) -> None:
|
|
||||||
self.actor = self.make_actor()
|
|
||||||
self.actor.optimizer = self.optimizer_class(self.actor.parameters(), lr=lr_schedule(1), **self.optimizer_kwargs)
|
|
||||||
|
|
||||||
if self.share_features_extractor:
|
|
||||||
self.critic = self.make_critic(features_extractor=self.actor.features_extractor)
|
|
||||||
# Do not optimize the shared features extractor with the critic loss
|
|
||||||
# otherwise, there are gradient computation issues
|
|
||||||
critic_parameters = [param for name, param in self.critic.named_parameters() if "features_extractor" not in name]
|
|
||||||
else:
|
|
||||||
# Create a separate features extractor for the critic
|
|
||||||
# this requires more memory and computation
|
|
||||||
self.critic = self.make_critic(features_extractor=None)
|
|
||||||
critic_parameters = self.critic.parameters()
|
|
||||||
|
|
||||||
# Critic target should not share the features extractor with critic
|
|
||||||
self.critic_target = self.make_critic(features_extractor=None)
|
|
||||||
self.critic_target.load_state_dict(self.critic.state_dict())
|
|
||||||
|
|
||||||
self.critic.optimizer = self.optimizer_class(critic_parameters, lr=lr_schedule(1), **self.optimizer_kwargs)
|
|
||||||
|
|
||||||
# Target networks should always be in eval mode
|
|
||||||
self.critic_target.set_training_mode(False)
|
|
||||||
|
|
||||||
def _get_constructor_parameters(self) -> Dict[str, Any]:
|
|
||||||
data = super()._get_constructor_parameters()
|
|
||||||
|
|
||||||
data.update(
|
|
||||||
dict(
|
|
||||||
net_arch=self.net_arch,
|
|
||||||
activation_fn=self.net_args["activation_fn"],
|
|
||||||
use_sde=self.actor_kwargs["use_sde"],
|
|
||||||
log_std_init=self.actor_kwargs["log_std_init"],
|
|
||||||
use_expln=self.actor_kwargs["use_expln"],
|
|
||||||
clip_mean=self.actor_kwargs["clip_mean"],
|
|
||||||
n_critics=self.critic_kwargs["n_critics"],
|
|
||||||
lr_schedule=self._dummy_schedule, # dummy lr schedule, not needed for loading policy alone
|
|
||||||
optimizer_class=self.optimizer_class,
|
|
||||||
optimizer_kwargs=self.optimizer_kwargs,
|
|
||||||
features_extractor_class=self.features_extractor_class,
|
|
||||||
features_extractor_kwargs=self.features_extractor_kwargs,
|
|
||||||
)
|
|
||||||
)
|
|
||||||
return data
|
|
||||||
|
|
||||||
def reset_noise(self, batch_size: int = 1) -> None:
|
|
||||||
"""
|
|
||||||
Sample new weights for the exploration matrix, when using gSDE.
|
|
||||||
|
|
||||||
:param batch_size:
|
|
||||||
"""
|
|
||||||
self.actor.reset_noise(batch_size=batch_size)
|
|
||||||
|
|
||||||
def make_actor(self, features_extractor: Optional[BaseFeaturesExtractor] = None) -> Actor:
|
|
||||||
actor_kwargs = self._update_features_extractor(self.actor_kwargs, features_extractor)
|
|
||||||
return Actor(**actor_kwargs).to(self.device)
|
|
||||||
|
|
||||||
def make_critic(self, features_extractor: Optional[BaseFeaturesExtractor] = None) -> ContinuousCritic:
|
|
||||||
critic_kwargs = self._update_features_extractor(self.critic_kwargs, features_extractor)
|
|
||||||
return ContinuousCritic(**critic_kwargs).to(self.device)
|
|
||||||
|
|
||||||
def forward(self, obs: th.Tensor, deterministic: bool = False) -> th.Tensor:
|
|
||||||
return self._predict(obs, deterministic=deterministic)
|
|
||||||
|
|
||||||
def _predict(self, observation: th.Tensor, deterministic: bool = False) -> th.Tensor:
|
|
||||||
return self.actor(observation, deterministic)
|
|
||||||
|
|
||||||
def set_training_mode(self, mode: bool) -> None:
|
|
||||||
"""
|
|
||||||
Put the policy in either training or evaluation mode.
|
|
||||||
|
|
||||||
This affects certain modules, such as batch normalisation and dropout.
|
|
||||||
|
|
||||||
:param mode: if true, set to training mode, else set to evaluation mode
|
|
||||||
"""
|
|
||||||
self.actor.set_training_mode(mode)
|
|
||||||
self.critic.set_training_mode(mode)
|
|
||||||
self.training = mode
|
|
||||||
|
|
||||||
|
|
||||||
MlpPolicy = SACPolicy
|
|
||||||
|
|
||||||
|
|
||||||
class CnnPolicy(SACPolicy):
|
|
||||||
"""
|
|
||||||
Policy class (with both actor and critic) for SAC.
|
|
||||||
|
|
||||||
:param observation_space: Observation space
|
|
||||||
:param action_space: Action space
|
|
||||||
:param lr_schedule: Learning rate schedule (could be constant)
|
|
||||||
:param net_arch: The specification of the policy and value networks.
|
|
||||||
:param activation_fn: Activation function
|
|
||||||
:param use_sde: Whether to use State Dependent Exploration or not
|
|
||||||
:param log_std_init: Initial value for the log standard deviation
|
|
||||||
:param sde_net_arch: Network architecture for extracting features
|
|
||||||
when using gSDE. If None, the latent features from the policy will be used.
|
|
||||||
Pass an empty list to use the states as features.
|
|
||||||
:param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure
|
|
||||||
a positive standard deviation (cf paper). It allows to keep variance
|
|
||||||
above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.
|
|
||||||
:param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.
|
|
||||||
:param features_extractor_class: Features extractor to use.
|
|
||||||
:param normalize_images: Whether to normalize images or not,
|
|
||||||
dividing by 255.0 (True by default)
|
|
||||||
:param optimizer_class: The optimizer to use,
|
|
||||||
``th.optim.Adam`` by default
|
|
||||||
:param optimizer_kwargs: Additional keyword arguments,
|
|
||||||
excluding the learning rate, to pass to the optimizer
|
|
||||||
:param n_critics: Number of critic networks to create.
|
|
||||||
:param share_features_extractor: Whether to share or not the features extractor
|
|
||||||
between the actor and the critic (this saves computation time)
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
observation_space: gym.spaces.Space,
|
|
||||||
action_space: gym.spaces.Space,
|
|
||||||
lr_schedule: Schedule,
|
|
||||||
net_arch: Optional[Union[List[int], Dict[str, List[int]]]] = None,
|
|
||||||
activation_fn: Type[nn.Module] = nn.ReLU,
|
|
||||||
use_sde: bool = False,
|
|
||||||
log_std_init: float = -3,
|
|
||||||
sde_net_arch: Optional[List[int]] = None,
|
|
||||||
use_expln: bool = False,
|
|
||||||
clip_mean: float = 2.0,
|
|
||||||
features_extractor_class: Type[BaseFeaturesExtractor] = NatureCNN,
|
|
||||||
features_extractor_kwargs: Optional[Dict[str, Any]] = None,
|
|
||||||
normalize_images: bool = True,
|
|
||||||
optimizer_class: Type[th.optim.Optimizer] = th.optim.Adam,
|
|
||||||
optimizer_kwargs: Optional[Dict[str, Any]] = None,
|
|
||||||
n_critics: int = 2,
|
|
||||||
share_features_extractor: bool = True,
|
|
||||||
):
|
|
||||||
super().__init__(
|
|
||||||
observation_space,
|
|
||||||
action_space,
|
|
||||||
lr_schedule,
|
|
||||||
net_arch,
|
|
||||||
activation_fn,
|
|
||||||
use_sde,
|
|
||||||
log_std_init,
|
|
||||||
sde_net_arch,
|
|
||||||
use_expln,
|
|
||||||
clip_mean,
|
|
||||||
features_extractor_class,
|
|
||||||
features_extractor_kwargs,
|
|
||||||
normalize_images,
|
|
||||||
optimizer_class,
|
|
||||||
optimizer_kwargs,
|
|
||||||
n_critics,
|
|
||||||
share_features_extractor,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
class MultiInputPolicy(SACPolicy):
|
|
||||||
"""
|
|
||||||
Policy class (with both actor and critic) for SAC.
|
|
||||||
|
|
||||||
:param observation_space: Observation space
|
|
||||||
:param action_space: Action space
|
|
||||||
:param lr_schedule: Learning rate schedule (could be constant)
|
|
||||||
:param net_arch: The specification of the policy and value networks.
|
|
||||||
:param activation_fn: Activation function
|
|
||||||
:param use_sde: Whether to use State Dependent Exploration or not
|
|
||||||
:param log_std_init: Initial value for the log standard deviation
|
|
||||||
:param sde_net_arch: Network architecture for extracting features
|
|
||||||
when using gSDE. If None, the latent features from the policy will be used.
|
|
||||||
Pass an empty list to use the states as features.
|
|
||||||
:param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure
|
|
||||||
a positive standard deviation (cf paper). It allows to keep variance
|
|
||||||
above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.
|
|
||||||
:param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.
|
|
||||||
:param features_extractor_class: Features extractor to use.
|
|
||||||
:param normalize_images: Whether to normalize images or not,
|
|
||||||
dividing by 255.0 (True by default)
|
|
||||||
:param optimizer_class: The optimizer to use,
|
|
||||||
``th.optim.Adam`` by default
|
|
||||||
:param optimizer_kwargs: Additional keyword arguments,
|
|
||||||
excluding the learning rate, to pass to the optimizer
|
|
||||||
:param n_critics: Number of critic networks to create.
|
|
||||||
:param share_features_extractor: Whether to share or not the features extractor
|
|
||||||
between the actor and the critic (this saves computation time)
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
observation_space: gym.spaces.Space,
|
|
||||||
action_space: gym.spaces.Space,
|
|
||||||
lr_schedule: Schedule,
|
|
||||||
net_arch: Optional[Union[List[int], Dict[str, List[int]]]] = None,
|
|
||||||
activation_fn: Type[nn.Module] = nn.ReLU,
|
|
||||||
use_sde: bool = False,
|
|
||||||
log_std_init: float = -3,
|
|
||||||
sde_net_arch: Optional[List[int]] = None,
|
|
||||||
use_expln: bool = False,
|
|
||||||
clip_mean: float = 2.0,
|
|
||||||
features_extractor_class: Type[BaseFeaturesExtractor] = CombinedExtractor,
|
|
||||||
features_extractor_kwargs: Optional[Dict[str, Any]] = None,
|
|
||||||
normalize_images: bool = True,
|
|
||||||
optimizer_class: Type[th.optim.Optimizer] = th.optim.Adam,
|
|
||||||
optimizer_kwargs: Optional[Dict[str, Any]] = None,
|
|
||||||
n_critics: int = 2,
|
|
||||||
share_features_extractor: bool = True,
|
|
||||||
):
|
|
||||||
super().__init__(
|
|
||||||
observation_space,
|
|
||||||
action_space,
|
|
||||||
lr_schedule,
|
|
||||||
net_arch,
|
|
||||||
activation_fn,
|
|
||||||
use_sde,
|
|
||||||
log_std_init,
|
|
||||||
sde_net_arch,
|
|
||||||
use_expln,
|
|
||||||
clip_mean,
|
|
||||||
features_extractor_class,
|
|
||||||
features_extractor_kwargs,
|
|
||||||
normalize_images,
|
|
||||||
optimizer_class,
|
|
||||||
optimizer_kwargs,
|
|
||||||
n_critics,
|
|
||||||
share_features_extractor,
|
|
||||||
)
|
|
@ -1,324 +0,0 @@
|
|||||||
from typing import Any, Dict, List, Optional, Tuple, Type, Union
|
|
||||||
|
|
||||||
import gym
|
|
||||||
import numpy as np
|
|
||||||
import torch as th
|
|
||||||
from torch.nn import functional as F
|
|
||||||
|
|
||||||
from stable_baselines3.common.buffers import ReplayBuffer
|
|
||||||
from stable_baselines3.common.noise import ActionNoise
|
|
||||||
from stable_baselines3.common.off_policy_algorithm import OffPolicyAlgorithm
|
|
||||||
from stable_baselines3.common.policies import BasePolicy
|
|
||||||
from stable_baselines3.common.type_aliases import GymEnv, MaybeCallback, Schedule
|
|
||||||
from stable_baselines3.common.utils import polyak_update
|
|
||||||
from stable_baselines3.sac.policies import CnnPolicy, MlpPolicy, MultiInputPolicy, SACPolicy
|
|
||||||
|
|
||||||
|
|
||||||
class TRL_SAC(OffPolicyAlgorithm):
|
|
||||||
"""
|
|
||||||
Trust Region Layers (TRL) based on SAC (Soft Actor Critic)
|
|
||||||
This implementation is almost a 1:1-copy of the sb3-code for SAC.
|
|
||||||
Only minor changes have been made to implement Differential Trust Region Layers
|
|
||||||
|
|
||||||
Description from original SAC implementation:
|
|
||||||
Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor,
|
|
||||||
This implementation borrows code from original implementation (https://github.com/haarnoja/sac)
|
|
||||||
from OpenAI Spinning Up (https://github.com/openai/spinningup), from the softlearning repo
|
|
||||||
(https://github.com/rail-berkeley/softlearning/)
|
|
||||||
and from Stable Baselines (https://github.com/hill-a/stable-baselines)
|
|
||||||
Paper: https://arxiv.org/abs/1801.01290
|
|
||||||
Introduction to SAC: https://spinningup.openai.com/en/latest/algorithms/sac.html
|
|
||||||
|
|
||||||
Note: we use double q target and not value target as discussed
|
|
||||||
in https://github.com/hill-a/stable-baselines/issues/270
|
|
||||||
|
|
||||||
:param policy: The policy model to use (MlpPolicy, CnnPolicy, ...)
|
|
||||||
:param env: The environment to learn from (if registered in Gym, can be str)
|
|
||||||
:param learning_rate: learning rate for adam optimizer,
|
|
||||||
the same learning rate will be used for all networks (Q-Values, Actor and Value function)
|
|
||||||
it can be a function of the current progress remaining (from 1 to 0)
|
|
||||||
:param buffer_size: size of the replay buffer
|
|
||||||
:param learning_starts: how many steps of the model to collect transitions for before learning starts
|
|
||||||
:param batch_size: Minibatch size for each gradient update
|
|
||||||
:param tau: the soft update coefficient ("Polyak update", between 0 and 1)
|
|
||||||
:param gamma: the discount factor
|
|
||||||
:param train_freq: Update the model every ``train_freq`` steps. Alternatively pass a tuple of frequency and unit
|
|
||||||
like ``(5, "step")`` or ``(2, "episode")``.
|
|
||||||
:param gradient_steps: How many gradient steps to do after each rollout (see ``train_freq``)
|
|
||||||
Set to ``-1`` means to do as many gradient steps as steps done in the environment
|
|
||||||
during the rollout.
|
|
||||||
:param action_noise: the action noise type (None by default), this can help
|
|
||||||
for hard exploration problem. Cf common.noise for the different action noise type.
|
|
||||||
:param replay_buffer_class: Replay buffer class to use (for instance ``HerReplayBuffer``).
|
|
||||||
If ``None``, it will be automatically selected.
|
|
||||||
:param replay_buffer_kwargs: Keyword arguments to pass to the replay buffer on creation.
|
|
||||||
:param optimize_memory_usage: Enable a memory efficient variant of the replay buffer
|
|
||||||
at a cost of more complexity.
|
|
||||||
See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195
|
|
||||||
:param ent_coef: Entropy regularization coefficient. (Equivalent to
|
|
||||||
inverse of reward scale in the original SAC paper.) Controlling exploration/exploitation trade-off.
|
|
||||||
Set it to 'auto' to learn it automatically (and 'auto_0.1' for using 0.1 as initial value)
|
|
||||||
:param target_update_interval: update the target network every ``target_network_update_freq``
|
|
||||||
gradient steps.
|
|
||||||
:param target_entropy: target entropy when learning ``ent_coef`` (``ent_coef = 'auto'``)
|
|
||||||
:param use_sde: Whether to use generalized State Dependent Exploration (gSDE)
|
|
||||||
instead of action noise exploration (default: False)
|
|
||||||
:param sde_sample_freq: Sample a new noise matrix every n steps when using gSDE
|
|
||||||
Default: -1 (only sample at the beginning of the rollout)
|
|
||||||
:param use_sde_at_warmup: Whether to use gSDE instead of uniform sampling
|
|
||||||
during the warm up phase (before learning starts)
|
|
||||||
:param create_eval_env: Whether to create a second environment that will be
|
|
||||||
used for evaluating the agent periodically. (Only available when passing string for the environment)
|
|
||||||
:param policy_kwargs: additional arguments to be passed to the policy on creation
|
|
||||||
:param verbose: the verbosity level: 0 no output, 1 info, 2 debug
|
|
||||||
:param seed: Seed for the pseudo random generators
|
|
||||||
:param device: Device (cpu, cuda, ...) on which the code should be run.
|
|
||||||
Setting it to auto, the code will be run on the GPU if possible.
|
|
||||||
:param _init_setup_model: Whether or not to build the network at the creation of the instance
|
|
||||||
"""
|
|
||||||
|
|
||||||
policy_aliases: Dict[str, Type[BasePolicy]] = {
|
|
||||||
"MlpPolicy": MlpPolicy,
|
|
||||||
"CnnPolicy": CnnPolicy,
|
|
||||||
"MultiInputPolicy": MultiInputPolicy,
|
|
||||||
}
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
policy: Union[str, Type[SACPolicy]],
|
|
||||||
env: Union[GymEnv, str],
|
|
||||||
learning_rate: Union[float, Schedule] = 3e-4,
|
|
||||||
buffer_size: int = 1_000_000, # 1e6
|
|
||||||
learning_starts: int = 100,
|
|
||||||
batch_size: int = 256,
|
|
||||||
tau: float = 0.005,
|
|
||||||
gamma: float = 0.99,
|
|
||||||
train_freq: Union[int, Tuple[int, str]] = 1,
|
|
||||||
gradient_steps: int = 1,
|
|
||||||
action_noise: Optional[ActionNoise] = None,
|
|
||||||
replay_buffer_class: Optional[ReplayBuffer] = None,
|
|
||||||
replay_buffer_kwargs: Optional[Dict[str, Any]] = None,
|
|
||||||
optimize_memory_usage: bool = False,
|
|
||||||
ent_coef: Union[str, float] = "auto",
|
|
||||||
target_update_interval: int = 1,
|
|
||||||
target_entropy: Union[str, float] = "auto",
|
|
||||||
use_sde: bool = False,
|
|
||||||
sde_sample_freq: int = -1,
|
|
||||||
use_sde_at_warmup: bool = False,
|
|
||||||
tensorboard_log: Optional[str] = None,
|
|
||||||
create_eval_env: bool = False,
|
|
||||||
policy_kwargs: Optional[Dict[str, Any]] = None,
|
|
||||||
verbose: int = 0,
|
|
||||||
seed: Optional[int] = None,
|
|
||||||
device: Union[th.device, str] = "auto",
|
|
||||||
_init_setup_model: bool = True,
|
|
||||||
):
|
|
||||||
|
|
||||||
super().__init__(
|
|
||||||
policy,
|
|
||||||
env,
|
|
||||||
learning_rate,
|
|
||||||
buffer_size,
|
|
||||||
learning_starts,
|
|
||||||
batch_size,
|
|
||||||
tau,
|
|
||||||
gamma,
|
|
||||||
train_freq,
|
|
||||||
gradient_steps,
|
|
||||||
action_noise,
|
|
||||||
replay_buffer_class=replay_buffer_class,
|
|
||||||
replay_buffer_kwargs=replay_buffer_kwargs,
|
|
||||||
policy_kwargs=policy_kwargs,
|
|
||||||
tensorboard_log=tensorboard_log,
|
|
||||||
verbose=verbose,
|
|
||||||
device=device,
|
|
||||||
create_eval_env=create_eval_env,
|
|
||||||
seed=seed,
|
|
||||||
use_sde=use_sde,
|
|
||||||
sde_sample_freq=sde_sample_freq,
|
|
||||||
use_sde_at_warmup=use_sde_at_warmup,
|
|
||||||
optimize_memory_usage=optimize_memory_usage,
|
|
||||||
supported_action_spaces=(gym.spaces.Box),
|
|
||||||
support_multi_env=True,
|
|
||||||
)
|
|
||||||
|
|
||||||
self.target_entropy = target_entropy
|
|
||||||
self.log_ent_coef = None # type: Optional[th.Tensor]
|
|
||||||
# Entropy coefficient / Entropy temperature
|
|
||||||
# Inverse of the reward scale
|
|
||||||
self.ent_coef = ent_coef
|
|
||||||
self.target_update_interval = target_update_interval
|
|
||||||
self.ent_coef_optimizer = None
|
|
||||||
|
|
||||||
if _init_setup_model:
|
|
||||||
self._setup_model()
|
|
||||||
|
|
||||||
def _setup_model(self) -> None:
|
|
||||||
super()._setup_model()
|
|
||||||
self._create_aliases()
|
|
||||||
# Target entropy is used when learning the entropy coefficient
|
|
||||||
if self.target_entropy == "auto":
|
|
||||||
# automatically set target entropy if needed
|
|
||||||
self.target_entropy = -np.prod(self.env.action_space.shape).astype(np.float32)
|
|
||||||
else:
|
|
||||||
# Force conversion
|
|
||||||
# this will also throw an error for unexpected string
|
|
||||||
self.target_entropy = float(self.target_entropy)
|
|
||||||
|
|
||||||
# The entropy coefficient or entropy can be learned automatically
|
|
||||||
# see Automating Entropy Adjustment for Maximum Entropy RL section
|
|
||||||
# of https://arxiv.org/abs/1812.05905
|
|
||||||
if isinstance(self.ent_coef, str) and self.ent_coef.startswith("auto"):
|
|
||||||
# Default initial value of ent_coef when learned
|
|
||||||
init_value = 1.0
|
|
||||||
if "_" in self.ent_coef:
|
|
||||||
init_value = float(self.ent_coef.split("_")[1])
|
|
||||||
assert init_value > 0.0, "The initial value of ent_coef must be greater than 0"
|
|
||||||
|
|
||||||
# Note: we optimize the log of the entropy coeff which is slightly different from the paper
|
|
||||||
# as discussed in https://github.com/rail-berkeley/softlearning/issues/37
|
|
||||||
self.log_ent_coef = th.log(th.ones(1, device=self.device) * init_value).requires_grad_(True)
|
|
||||||
self.ent_coef_optimizer = th.optim.Adam([self.log_ent_coef], lr=self.lr_schedule(1))
|
|
||||||
else:
|
|
||||||
# Force conversion to float
|
|
||||||
# this will throw an error if a malformed string (different from 'auto')
|
|
||||||
# is passed
|
|
||||||
self.ent_coef_tensor = th.tensor(float(self.ent_coef)).to(self.device)
|
|
||||||
|
|
||||||
def _create_aliases(self) -> None:
|
|
||||||
self.actor = self.policy.actor
|
|
||||||
self.critic = self.policy.critic
|
|
||||||
self.critic_target = self.policy.critic_target
|
|
||||||
|
|
||||||
def train(self, gradient_steps: int, batch_size: int = 64) -> None:
|
|
||||||
# Switch to train mode (this affects batch norm / dropout)
|
|
||||||
self.policy.set_training_mode(True)
|
|
||||||
# Update optimizers learning rate
|
|
||||||
optimizers = [self.actor.optimizer, self.critic.optimizer]
|
|
||||||
if self.ent_coef_optimizer is not None:
|
|
||||||
optimizers += [self.ent_coef_optimizer]
|
|
||||||
|
|
||||||
# Update learning rate according to lr schedule
|
|
||||||
self._update_learning_rate(optimizers)
|
|
||||||
|
|
||||||
ent_coef_losses, ent_coefs = [], []
|
|
||||||
actor_losses, critic_losses = [], []
|
|
||||||
|
|
||||||
for gradient_step in range(gradient_steps):
|
|
||||||
# Sample replay buffer
|
|
||||||
replay_data = self.replay_buffer.sample(batch_size, env=self._vec_normalize_env)
|
|
||||||
|
|
||||||
# We need to sample because `log_std` may have changed between two gradient steps
|
|
||||||
if self.use_sde:
|
|
||||||
self.actor.reset_noise()
|
|
||||||
|
|
||||||
# Action by the current actor for the sampled state
|
|
||||||
actions_pi, log_prob = self.actor.action_log_prob(replay_data.observations)
|
|
||||||
log_prob = log_prob.reshape(-1, 1)
|
|
||||||
|
|
||||||
ent_coef_loss = None
|
|
||||||
if self.ent_coef_optimizer is not None:
|
|
||||||
# Important: detach the variable from the graph
|
|
||||||
# so we don't change it with other losses
|
|
||||||
# see https://github.com/rail-berkeley/softlearning/issues/60
|
|
||||||
ent_coef = th.exp(self.log_ent_coef.detach())
|
|
||||||
ent_coef_loss = -(self.log_ent_coef * (log_prob + self.target_entropy).detach()).mean()
|
|
||||||
ent_coef_losses.append(ent_coef_loss.item())
|
|
||||||
else:
|
|
||||||
ent_coef = self.ent_coef_tensor
|
|
||||||
|
|
||||||
ent_coefs.append(ent_coef.item())
|
|
||||||
|
|
||||||
# Optimize entropy coefficient, also called
|
|
||||||
# entropy temperature or alpha in the paper
|
|
||||||
if ent_coef_loss is not None:
|
|
||||||
self.ent_coef_optimizer.zero_grad()
|
|
||||||
ent_coef_loss.backward()
|
|
||||||
self.ent_coef_optimizer.step()
|
|
||||||
|
|
||||||
with th.no_grad():
|
|
||||||
# Select action according to policy
|
|
||||||
next_actions, next_log_prob = self.actor.action_log_prob(replay_data.next_observations)
|
|
||||||
# Compute the next Q values: min over all critics targets
|
|
||||||
next_q_values = th.cat(self.critic_target(replay_data.next_observations, next_actions), dim=1)
|
|
||||||
next_q_values, _ = th.min(next_q_values, dim=1, keepdim=True)
|
|
||||||
# add entropy term
|
|
||||||
next_q_values = next_q_values - ent_coef * next_log_prob.reshape(-1, 1)
|
|
||||||
# td error + entropy term
|
|
||||||
target_q_values = replay_data.rewards + (1 - replay_data.dones) * self.gamma * next_q_values
|
|
||||||
|
|
||||||
# Get current Q-values estimates for each critic network
|
|
||||||
# using action from the replay buffer
|
|
||||||
current_q_values = self.critic(replay_data.observations, replay_data.actions)
|
|
||||||
|
|
||||||
# Compute critic loss
|
|
||||||
critic_loss = 0.5 * sum(F.mse_loss(current_q, target_q_values) for current_q in current_q_values)
|
|
||||||
critic_losses.append(critic_loss.item())
|
|
||||||
|
|
||||||
# Optimize the critic
|
|
||||||
self.critic.optimizer.zero_grad()
|
|
||||||
critic_loss.backward()
|
|
||||||
self.critic.optimizer.step()
|
|
||||||
|
|
||||||
# Compute actor loss
|
|
||||||
# Alternative: actor_loss = th.mean(log_prob - qf1_pi)
|
|
||||||
# Mean over all critic networks
|
|
||||||
q_values_pi = th.cat(self.critic(replay_data.observations, actions_pi), dim=1)
|
|
||||||
min_qf_pi, _ = th.min(q_values_pi, dim=1, keepdim=True)
|
|
||||||
actor_loss = (ent_coef * log_prob - min_qf_pi).mean()
|
|
||||||
actor_losses.append(actor_loss.item())
|
|
||||||
|
|
||||||
# Optimize the actor
|
|
||||||
self.actor.optimizer.zero_grad()
|
|
||||||
actor_loss.backward()
|
|
||||||
self.actor.optimizer.step()
|
|
||||||
|
|
||||||
# Update target networks
|
|
||||||
if gradient_step % self.target_update_interval == 0:
|
|
||||||
polyak_update(self.critic.parameters(), self.critic_target.parameters(), self.tau)
|
|
||||||
|
|
||||||
self._n_updates += gradient_steps
|
|
||||||
|
|
||||||
self.logger.record("train/n_updates", self._n_updates, exclude="tensorboard")
|
|
||||||
self.logger.record("train/ent_coef", np.mean(ent_coefs))
|
|
||||||
self.logger.record("train/actor_loss", np.mean(actor_losses))
|
|
||||||
self.logger.record("train/critic_loss", np.mean(critic_losses))
|
|
||||||
if len(ent_coef_losses) > 0:
|
|
||||||
self.logger.record("train/ent_coef_loss", np.mean(ent_coef_losses))
|
|
||||||
|
|
||||||
def learn(
|
|
||||||
self,
|
|
||||||
total_timesteps: int,
|
|
||||||
callback: MaybeCallback = None,
|
|
||||||
log_interval: int = 4,
|
|
||||||
eval_env: Optional[GymEnv] = None,
|
|
||||||
eval_freq: int = -1,
|
|
||||||
n_eval_episodes: int = 5,
|
|
||||||
tb_log_name: str = "SAC",
|
|
||||||
eval_log_path: Optional[str] = None,
|
|
||||||
reset_num_timesteps: bool = True,
|
|
||||||
) -> OffPolicyAlgorithm:
|
|
||||||
|
|
||||||
return super().learn(
|
|
||||||
total_timesteps=total_timesteps,
|
|
||||||
callback=callback,
|
|
||||||
log_interval=log_interval,
|
|
||||||
eval_env=eval_env,
|
|
||||||
eval_freq=eval_freq,
|
|
||||||
n_eval_episodes=n_eval_episodes,
|
|
||||||
tb_log_name=tb_log_name,
|
|
||||||
eval_log_path=eval_log_path,
|
|
||||||
reset_num_timesteps=reset_num_timesteps,
|
|
||||||
)
|
|
||||||
|
|
||||||
def _excluded_save_params(self) -> List[str]:
|
|
||||||
return super()._excluded_save_params() + ["actor", "critic", "critic_target"]
|
|
||||||
|
|
||||||
def _get_torch_save_params(self) -> Tuple[List[str], List[str]]:
|
|
||||||
state_dicts = ["policy", "actor.optimizer", "critic.optimizer"]
|
|
||||||
if self.ent_coef_optimizer is not None:
|
|
||||||
saved_pytorch_variables = ["log_ent_coef"]
|
|
||||||
state_dicts.append("ent_coef_optimizer")
|
|
||||||
else:
|
|
||||||
saved_pytorch_variables = ["ent_coef_tensor"]
|
|
||||||
return state_dicts, saved_pytorch_variables
|
|
Loading…
Reference in New Issue
Block a user