From e71735bf792c1e1b4d936a7f3e819446fcdc8995 Mon Sep 17 00:00:00 2001 From: Dominik Roth Date: Mon, 20 Jun 2022 23:12:42 +0200 Subject: [PATCH] Trying to converge on simple columbus envs --- test.py | 80 ++++++++++++++++++--------------------------------------- 1 file changed, 25 insertions(+), 55 deletions(-) diff --git a/test.py b/test.py index 4e308ea..17accf5 100644 --- a/test.py +++ b/test.py @@ -2,91 +2,61 @@ import gym from gym.envs.registration import register import numpy as np import time +import datetime from stable_baselines3 import SAC, PPO, A2C from stable_baselines3.common.evaluation import evaluate_policy +from stable_baselines3.common.policies import ActorCriticCnnPolicy, ActorCriticPolicy, MultiInputActorCriticPolicy from sb3_trl.trl_pg import TRL_PG -from columbus import env +import columbus -register( - id='ColumbusTestRay-v0', - entry_point=env.ColumbusTestRay, - max_episode_steps=30*60*5, -) -def main(): - #env = gym.make("LunarLander-v2") - env = gym.make("ColumbusTestRay-v0") - - ppo = PPO( - "MlpPolicy", - env, - verbose=1, - tensorboard_log="./logs_tb/test/ppo", - use_sde=False, - ent_coef=0.0001, - learning_rate=0.0004 - ) - ppo_base_sde = PPO( - "MlpPolicy", - env, - verbose=1, - tensorboard_log="./logs_tb/test/ppo_base_sde/", - use_sde=True, - sde_sample_freq=30*20, - sde_net_arch=[], - ent_coef=0.000001, - learning_rate=0.0003 - ) +def main(env_name='ColumbusEasyObstacles-v0'): + env = gym.make(env_name) ppo_latent_sde = PPO( "MlpPolicy", env, verbose=1, - tensorboard_log="./logs_tb/test/ppo_latent_sde/", + tensorboard_log="./logs_tb/"+env_name+"/ppo_latent_sde/", use_sde=True, - sde_sample_freq=30*20, - ent_coef=0.000001, - learning_rate=0.0003 - ) - a2c = A2C( - "MlpPolicy", - env, - verbose=1, - tensorboard_log="./logs_tb/test/a2c/", - ) - trl = TRL_PG( - "MlpPolicy", - env, - verbose=0, - tensorboard_log="./logs_tb/test/trl_pg/", + sde_sample_freq=30*15, + ent_coef=0.0032, + vf_coef=0.0005, + gamma=0.95, + learning_rate=0.02 ) + #trl = TRL_PG( + # "MlpPolicy", + # env, + # verbose=0, + # tensorboard_log="./logs_tb/"+env_name+"/trl_pg/", + #) - #print('PPO:') - #testModel(ppo, 500000, showRes = True, saveModel=True, n_eval_episodes=4) - print('PPO_BASE_SDE:') - testModel(ppo_base_sde, 200000, showRes = True, saveModel=True, n_eval_episodes=0) - #print('A2C:') - #testModel(a2c, showRes = True) + print('PPO_LATENT_SDE:') + testModel(ppo_latent_sde, 100000, showRes = True, saveModel=True, n_eval_episodes=0) #print('TRL_PG:') #testModel(trl) -def testModel(model, timesteps=100000, showRes=False, saveModel=False, n_eval_episodes=16): +def testModel(model, timesteps=150000, showRes=False, saveModel=False, n_eval_episodes=16): env = model.get_env() model.learn(timesteps) + if saveModel: + now = datetime.datetime.now().strftime('%d.%m.%Y-%H:%M') + model.save(model.tensorboard_log.replace('./logs_tb/','').replace('/','_')+now+'.zip') + if n_eval_episodes: mean_reward, std_reward = evaluate_policy(model, env, n_eval_episodes=n_eval_episodes, deterministic=False) print('Reward: '+str(round(mean_reward,3))+'±'+str(round(std_reward,2))) if showRes: - model.save("model") input('') obs = env.reset() # Evaluate the agent episode_reward = 0 - for _ in range(1000): + for _ in range(30*60*5): time.sleep(1/30) action, _ = model.predict(obs, deterministic=False) obs, reward, done, info = env.step(action)