diff --git a/metastable_baselines/distributions/distributions.py b/metastable_baselines/distributions/distributions.py index 95fb7f6..a8761c8 100644 --- a/metastable_baselines/distributions/distributions.py +++ b/metastable_baselines/distributions/distributions.py @@ -136,7 +136,7 @@ class UniversalGaussianDistribution(SB3_Distribution): :param action_dim: Dimension of the action space. """ - def __init__(self, action_dim: int, use_sde: bool = False, neural_strength: Strength = Strength.DIAG, cov_strength: Strength = Strength.DIAG, parameterization_type: ParametrizationType = ParametrizationType.NONE, enforce_positive_type: EnforcePositiveType = EnforcePositiveType.ABS, prob_squashing_type: ProbSquashingType = ProbSquashingType.NONE, epsilon=1e-3, sde_learn_features=False): + def __init__(self, action_dim: int, use_sde: bool = False, neural_strength: Strength = Strength.DIAG, cov_strength: Strength = Strength.DIAG, parameterization_type: ParametrizationType = ParametrizationType.NONE, enforce_positive_type: EnforcePositiveType = EnforcePositiveType.ABS, prob_squashing_type: ProbSquashingType = ProbSquashingType.NONE, epsilon=1e-3, sde_learn_features=False, sde_latent_softmax=False): super(UniversalGaussianDistribution, self).__init__() self.action_dim = action_dim self.par_strength = cast_to_enum(neural_strength, Strength) @@ -155,6 +155,7 @@ class UniversalGaussianDistribution(SB3_Distribution): self.use_sde = use_sde self.learn_features = sde_learn_features + self.sde_latent_softmax = sde_latent_softmax assert (self.par_type != ParametrizationType.NONE) == ( self.cov_strength == Strength.FULL), 'You should set an ParameterizationType iff the cov-strength is full' @@ -349,6 +350,8 @@ class UniversalGaussianDistribution(SB3_Distribution): def get_noise(self, latent_sde: th.Tensor) -> th.Tensor: latent_sde = latent_sde if self.learn_features else latent_sde.detach() latent_sde = latent_sde[..., -self.latent_sde_dim:] + if self.sde_latent_softmax: + latent_sde = th.softmax(dim=-1) latent_sde = th.nn.functional.normalize(latent_sde, dim=-1) # Default case: only one exploration matrix if len(latent_sde) == 1 or len(latent_sde) != len(self.exploration_matrices):