Renamed our RolloutBuffer and testing the FrobeniusProjectionLayer
This commit is contained in:
parent
024a9a0265
commit
edf00553dd
@ -17,7 +17,9 @@ from stable_baselines3.common.utils import obs_as_tensor
|
|||||||
from stable_baselines3.common.vec_env import VecNormalize
|
from stable_baselines3.common.vec_env import VecNormalize
|
||||||
|
|
||||||
from ..projections.base_projection_layer import BaseProjectionLayer
|
from ..projections.base_projection_layer import BaseProjectionLayer
|
||||||
# from ..projections.frob_projection_layer import FrobeniusProjectionLayer
|
from ..projections.frob_projection_layer import FrobeniusProjectionLayer
|
||||||
|
|
||||||
|
from ..misc.rollout_buffer import GaussianRolloutBuffer, GaussianRolloutBufferSamples
|
||||||
|
|
||||||
|
|
||||||
class TRL_PG(OnPolicyAlgorithm):
|
class TRL_PG(OnPolicyAlgorithm):
|
||||||
@ -105,7 +107,8 @@ class TRL_PG(OnPolicyAlgorithm):
|
|||||||
device: Union[th.device, str] = "auto",
|
device: Union[th.device, str] = "auto",
|
||||||
|
|
||||||
# Different from PPO:
|
# Different from PPO:
|
||||||
projection: BaseProjectionLayer = BaseProjectionLayer(),
|
projection: BaseProjectionLayer = FrobeniusProjectionLayer(),
|
||||||
|
#projection: BaseProjectionLayer = BaseProjectionLayer(),
|
||||||
|
|
||||||
_init_setup_model: bool = True,
|
_init_setup_model: bool = True,
|
||||||
):
|
):
|
||||||
@ -188,7 +191,7 @@ class TRL_PG(OnPolicyAlgorithm):
|
|||||||
self.clip_range_vf = get_schedule_fn(self.clip_range_vf)
|
self.clip_range_vf = get_schedule_fn(self.clip_range_vf)
|
||||||
|
|
||||||
# Changed from PPO: We need a bigger RolloutBuffer
|
# Changed from PPO: We need a bigger RolloutBuffer
|
||||||
self.rollout_buffer = TRLRolloutBuffer(
|
self.rollout_buffer = GaussianRolloutBuffer(
|
||||||
self.n_steps,
|
self.n_steps,
|
||||||
self.observation_space,
|
self.observation_space,
|
||||||
self.action_space,
|
self.action_space,
|
||||||
@ -513,97 +516,3 @@ class TRL_PG(OnPolicyAlgorithm):
|
|||||||
callback.on_rollout_end()
|
callback.on_rollout_end()
|
||||||
|
|
||||||
return True
|
return True
|
||||||
|
|
||||||
|
|
||||||
class TRLRolloutBufferSamples(NamedTuple):
|
|
||||||
observations: th.Tensor
|
|
||||||
actions: th.Tensor
|
|
||||||
old_values: th.Tensor
|
|
||||||
old_log_prob: th.Tensor
|
|
||||||
advantages: th.Tensor
|
|
||||||
returns: th.Tensor
|
|
||||||
means: th.Tensor
|
|
||||||
stds: th.Tensor
|
|
||||||
|
|
||||||
|
|
||||||
class TRLRolloutBuffer(RolloutBuffer):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
buffer_size: int,
|
|
||||||
observation_space: spaces.Space,
|
|
||||||
action_space: spaces.Space,
|
|
||||||
device: Union[th.device, str] = "cpu",
|
|
||||||
gae_lambda: float = 1,
|
|
||||||
gamma: float = 0.99,
|
|
||||||
n_envs: int = 1,
|
|
||||||
):
|
|
||||||
|
|
||||||
super().__init__(buffer_size, observation_space, action_space,
|
|
||||||
device, n_envs=n_envs, gae_lambda=gae_lambda, gamma=gamma)
|
|
||||||
self.means, self.stds = None, None
|
|
||||||
|
|
||||||
def reset(self) -> None:
|
|
||||||
self.means = np.zeros(
|
|
||||||
(self.buffer_size, self.n_envs) + self.action_space.shape, dtype=np.float32)
|
|
||||||
self.stds = np.zeros(
|
|
||||||
# (self.buffer_size, self.n_envs) + self.action_space.shape + self.action_space.shape, dtype=np.float32)
|
|
||||||
(self.buffer_size, self.n_envs) + self.action_space.shape, dtype=np.float32)
|
|
||||||
super().reset()
|
|
||||||
|
|
||||||
def add(
|
|
||||||
self,
|
|
||||||
obs: np.ndarray,
|
|
||||||
action: np.ndarray,
|
|
||||||
reward: np.ndarray,
|
|
||||||
episode_start: np.ndarray,
|
|
||||||
value: th.Tensor,
|
|
||||||
log_prob: th.Tensor,
|
|
||||||
mean: th.Tensor,
|
|
||||||
std: th.Tensor,
|
|
||||||
) -> None:
|
|
||||||
"""
|
|
||||||
:param obs: Observation
|
|
||||||
:param action: Action
|
|
||||||
:param reward:
|
|
||||||
:param episode_start: Start of episode signal.
|
|
||||||
:param value: estimated value of the current state
|
|
||||||
following the current policy.
|
|
||||||
:param log_prob: log probability of the action
|
|
||||||
following the current policy.
|
|
||||||
:param mean: Foo
|
|
||||||
:param std: Bar
|
|
||||||
"""
|
|
||||||
|
|
||||||
if len(log_prob.shape) == 0:
|
|
||||||
# Reshape 0-d tensor to avoid error
|
|
||||||
log_prob = log_prob.reshape(-1, 1)
|
|
||||||
|
|
||||||
# Reshape needed when using multiple envs with discrete observations
|
|
||||||
# as numpy cannot broadcast (n_discrete,) to (n_discrete, 1)
|
|
||||||
if isinstance(self.observation_space, spaces.Discrete):
|
|
||||||
obs = obs.reshape((self.n_envs,) + self.obs_shape)
|
|
||||||
|
|
||||||
self.observations[self.pos] = np.array(obs).copy()
|
|
||||||
self.actions[self.pos] = np.array(action).copy()
|
|
||||||
self.rewards[self.pos] = np.array(reward).copy()
|
|
||||||
self.episode_starts[self.pos] = np.array(episode_start).copy()
|
|
||||||
self.values[self.pos] = value.clone().cpu().numpy().flatten()
|
|
||||||
self.log_probs[self.pos] = log_prob.clone().cpu().numpy()
|
|
||||||
self.means[self.pos] = mean.clone().cpu().numpy()
|
|
||||||
self.stds[self.pos] = std.clone().cpu().numpy()
|
|
||||||
self.pos += 1
|
|
||||||
if self.pos == self.buffer_size:
|
|
||||||
self.full = True
|
|
||||||
|
|
||||||
def _get_samples(self, batch_inds: np.ndarray, env: Optional[VecNormalize] = None) -> TRLRolloutBufferSamples:
|
|
||||||
data = (
|
|
||||||
self.observations[batch_inds],
|
|
||||||
self.actions[batch_inds],
|
|
||||||
self.values[batch_inds].flatten(),
|
|
||||||
self.log_probs[batch_inds].flatten(),
|
|
||||||
self.advantages[batch_inds].flatten(),
|
|
||||||
self.returns[batch_inds].flatten(),
|
|
||||||
self.means[batch_inds].reshape((len(batch_inds), -1)),
|
|
||||||
self.stds[batch_inds].reshape((len(batch_inds), -1)),
|
|
||||||
)
|
|
||||||
return TRLRolloutBufferSamples(*tuple(map(self.to_torch, data)))
|
|
||||||
|
Loading…
Reference in New Issue
Block a user