import torch as th from stable_baselines3.common.distributions import Distribution as SB3_Distribution def get_mean_and_chol(p, expand=False): if isinstance(p, th.distributions.Normal): if expand: return p.mean, th.diag_embed(p.stddev) else: return p.mean, p.stddev elif isinstance(p, th.distributions.MultivariateNormal): return p.mean, p.scale_tril elif isinstance(p, SB3_Distribution): return get_mean_and_chol(p.distribution, expand=expand) else: raise Exception('Dist-Type not implemented') def get_mean_and_sqrt(p): raise Exception('Not yet implemented...') if isinstance(p, th.distributions.Normal): return p.mean, p.stddev elif isinstance(p, th.distributions.MultivariateNormal): return p.mean, p.scale_tril elif isinstance(p, SB3_Distribution): return get_mean_and_chol(p.distribution) else: raise Exception('Dist-Type not implemented') def get_cov(p): if isinstance(p, th.distributions.Normal): return th.diag_embed(p.variance) elif isinstance(p, th.distributions.MultivariateNormal): return p.covariance_matrix elif isinstance(p, SB3_Distribution): return get_cov(p.distribution) else: raise Exception('Dist-Type not implemented') def has_diag_cov(p, numerical_check=True): if isinstance(p, SB3_Distribution): return has_diag_cov(p.distribution, numerical_check=numerical_check) if isinstance(p, th.distributions.Normal): return True if not numerical_check: return False # Check if matrix is diag cov = get_cov(p) return th.equal(cov - th.diag_embed(th.diagonal(cov, dim1=-2, dim2=-1), th.zeros_like(cov))) def is_contextual(p): # TODO: Implement for UniveralGaussianDist return False def get_diag_cov_vec(p, check_diag=True, numerical_check=True): if check_diag and not has_diag_cov(p): raise Exception('Cannot reduce cov-mat to diag-vec: Is not diagonal') return th.diagonal(get_cov(p), dim1=-2, dim2=-1) def new_dist_like(orig_p, mean, chol): if isinstance(orig_p, th.distributions.Normal): if orig_p.stddev.shape != chol.shape: chol = th.diagonal(chol, dim1=1, dim2=2) return th.distributions.Normal(mean, chol) elif isinstance(orig_p, th.distributions.MultivariateNormal): return th.distributions.MultivariateNormal(mean, scale_tril=chol) elif isinstance(orig_p, SB3_Distribution): p = orig_p.distribution if isinstance(p, th.distributions.Normal): p_out = orig_p.__class__(orig_p.action_dim) p_out.distribution = th.distributions.Normal(mean, chol) elif isinstance(p, th.distributions.MultivariateNormal): p_out = orig_p.__class__(orig_p.action_dim) p_out.distribution = th.distributions.MultivariateNormal( mean, scale_tril=chol) else: raise Exception('Dist-Type not implemented (of sb3 dist)') return p_out else: raise Exception('Dist-Type not implemented')