import collections import warnings from functools import partial from typing import Any, Dict, List, Optional, Tuple, Type, Union import gym import numpy as np import torch as th from torch import nn import math from stable_baselines3.common.distributions import ( BernoulliDistribution, CategoricalDistribution, DiagGaussianDistribution, Distribution, MultiCategoricalDistribution, StateDependentNoiseDistribution, ) from stable_baselines3.common.torch_layers import ( BaseFeaturesExtractor, CombinedExtractor, FlattenExtractor, MlpExtractor, NatureCNN, ) from stable_baselines3.common.type_aliases import Schedule from stable_baselines3.common.policies import BasePolicy from stable_baselines3.common.torch_layers import ( BaseFeaturesExtractor, CombinedExtractor, FlattenExtractor, NatureCNN, ) from metastable_baselines.projections.w2_projection_layer import WassersteinProjectionLayer from ..distributions import UniversalGaussianDistribution, make_proba_distribution from ..misc.distTools import get_mean_and_chol class ActorCriticPolicy(BasePolicy): """ Code stolen from SB3 Policy class for actor-critic algorithms (has both policy and value prediction). Used by A2C, PPO and the likes. :param observation_space: Observation space :param action_space: Action space :param lr_schedule: Learning rate schedule (could be constant) :param net_arch: The specification of the policy and value networks. :param activation_fn: Activation function :param ortho_init: Whether to use or not orthogonal initialization :param use_sde: Whether to use State Dependent Exploration or not :param log_std_init: Initial value for the log standard deviation :param full_std: Whether to use (n_features x n_actions) parameters for the std instead of only (n_features,) when using gSDE :param sde_net_arch: Network architecture for extracting features when using gSDE. If None, the latent features from the policy will be used. Pass an empty list to use the states as features. :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure a positive standard deviation (cf paper). It allows to keep variance above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough. :param squash_output: Whether to squash the output using a tanh function, this allows to ensure boundaries when using gSDE. :param features_extractor_class: Features extractor to use. :param features_extractor_kwargs: Keyword arguments to pass to the features extractor. :param normalize_images: Whether to normalize images or not, dividing by 255.0 (True by default) :param optimizer_class: The optimizer to use, ``th.optim.Adam`` by default :param optimizer_kwargs: Additional keyword arguments, excluding the learning rate, to pass to the optimizer """ # TODO: Allow passing of dist_kwargs into dist def __init__( self, observation_space: gym.spaces.Space, action_space: gym.spaces.Space, lr_schedule: Schedule, net_arch: Optional[List[Union[int, Dict[str, List[int]]]]] = None, activation_fn: Type[nn.Module] = nn.Tanh, ortho_init: bool = True, use_sde: bool = False, log_std_init: float = 0.0, full_std: bool = True, sde_net_arch: Optional[List[int]] = None, use_expln: bool = False, squash_output: bool = False, features_extractor_class: Type[BaseFeaturesExtractor] = FlattenExtractor, features_extractor_kwargs: Optional[Dict[str, Any]] = None, normalize_images: bool = True, optimizer_class: Type[th.optim.Optimizer] = th.optim.Adam, optimizer_kwargs: Optional[Dict[str, Any]] = None, dist_kwargs: Optional[Dict[str, Any]] = None, sqrt_induced_gaussian=False, ): if optimizer_kwargs is None: optimizer_kwargs = {} # Small values to avoid NaN in Adam optimizer if optimizer_class == th.optim.Adam: optimizer_kwargs["eps"] = 1e-5 super().__init__( observation_space, action_space, features_extractor_class, features_extractor_kwargs, optimizer_class=optimizer_class, optimizer_kwargs=optimizer_kwargs, squash_output=squash_output, ) # Default network architecture, from stable-baselines if net_arch is None: if features_extractor_class == NatureCNN: net_arch = [] else: net_arch = [dict(pi=[64, 64], vf=[64, 64])] self.net_arch = net_arch self.activation_fn = activation_fn self.ortho_init = ortho_init self.features_extractor = features_extractor_class( self.observation_space, **self.features_extractor_kwargs) self.features_dim = self.features_extractor.features_dim self.normalize_images = normalize_images self.log_std_init = log_std_init # Keyword arguments for gSDE distribution if use_sde: add_dist_kwargs = { "full_std": full_std, "squash_output": squash_output, "use_expln": use_expln, "learn_features": False, } for k in add_dist_kwargs: dist_kwargs[k] = add_dist_kwargs[k] if sde_net_arch is not None: warnings.warn( "sde_net_arch is deprecated and will be removed in SB3 v2.4.0.", DeprecationWarning) self.use_sde = use_sde self.dist_kwargs = dist_kwargs self.sqrt_induced_gaussian = sqrt_induced_gaussian # Action distribution self.action_dist = make_proba_distribution( action_space, use_sde=use_sde, dist_kwargs=dist_kwargs) self._build(lr_schedule) def _get_constructor_parameters(self) -> Dict[str, Any]: data = super()._get_constructor_parameters() default_none_kwargs = self.dist_kwargs or collections.defaultdict( lambda: None) data.update( dict( net_arch=self.net_arch, activation_fn=self.activation_fn, use_sde=self.use_sde, log_std_init=self.log_std_init, squash_output=default_none_kwargs["squash_output"], full_std=default_none_kwargs["full_std"], use_expln=default_none_kwargs["use_expln"], # dummy lr schedule, not needed for loading policy alone lr_schedule=self._dummy_schedule, ortho_init=self.ortho_init, optimizer_class=self.optimizer_class, optimizer_kwargs=self.optimizer_kwargs, features_extractor_class=self.features_extractor_class, features_extractor_kwargs=self.features_extractor_kwargs, ) ) return data def reset_noise(self, n_envs: int = 1) -> None: """ Sample new weights for the exploration matrix. :param n_envs: """ assert isinstance( self.action_dist, StateDependentNoiseDistribution) or isinstance( self.action_dist, UniversalGaussianDistribution), "reset_noise() is only available when using gSDE" self.action_dist.sample_weights(self.log_std, batch_size=n_envs) def _build_mlp_extractor(self) -> None: """ Create the policy and value networks. Part of the layers can be shared. """ # Note: If net_arch is None and some features extractor is used, # net_arch here is an empty list and mlp_extractor does not # really contain any layers (acts like an identity module). self.mlp_extractor = MlpExtractor( self.features_dim, net_arch=self.net_arch, activation_fn=self.activation_fn, device=self.device, ) def _build(self, lr_schedule: Schedule) -> None: """ Create the networks and the optimizer. :param lr_schedule: Learning rate schedule lr_schedule(1) is the initial learning rate """ self._build_mlp_extractor() latent_dim_pi = self.mlp_extractor.latent_dim_pi if isinstance(self.action_dist, DiagGaussianDistribution): self.action_net, self.log_std = self.action_dist.proba_distribution_net( latent_dim=latent_dim_pi, log_std_init=self.log_std_init ) elif isinstance(self.action_dist, StateDependentNoiseDistribution): self.action_net, self.log_std = self.action_dist.proba_distribution_net( latent_dim=latent_dim_pi, latent_sde_dim=latent_dim_pi, log_std_init=self.log_std_init ) elif isinstance(self.action_dist, (CategoricalDistribution, MultiCategoricalDistribution, BernoulliDistribution)): self.action_net = self.action_dist.proba_distribution_net( latent_dim=latent_dim_pi) elif isinstance(self.action_dist, UniversalGaussianDistribution): self.action_net, self.chol_net = self.action_dist.proba_distribution_net( latent_dim=latent_dim_pi, latent_sde_dim=latent_dim_pi, std_init=math.exp( self.log_std_init) ) else: raise NotImplementedError( f"Unsupported distribution '{self.action_dist}'.") self.value_net = nn.Linear(self.mlp_extractor.latent_dim_vf, 1) # Init weights: use orthogonal initialization # with small initial weight for the output if self.ortho_init: # TODO: check for features_extractor # Values from stable-baselines. # features_extractor/mlp values are # originally from openai/baselines (default gains/init_scales). module_gains = { self.features_extractor: np.sqrt(2), self.mlp_extractor: np.sqrt(2), self.action_net: 0.01, self.value_net: 1, } for module, gain in module_gains.items(): module.apply(partial(self.init_weights, gain=gain)) # Setup optimizer with initial learning rate self.optimizer = self.optimizer_class( self.parameters(), lr=lr_schedule(1), **self.optimizer_kwargs) def forward(self, obs: th.Tensor, deterministic: bool = False) -> Tuple[th.Tensor, th.Tensor, th.Tensor]: """ Forward pass in all the networks (actor and critic) :param obs: Observation :param deterministic: Whether to sample or use deterministic actions :return: action, value and log probability of the action """ # Preprocess the observation if needed features = self.extract_features(obs) latent_pi, latent_vf = self.mlp_extractor(features) # Evaluate the values for the given observations values = self.value_net(latent_vf) distribution = self._get_action_dist_from_latent(latent_pi) actions = distribution.get_actions(deterministic=deterministic) log_prob = distribution.log_prob(actions) return actions, values, log_prob def _get_action_dist_from_latent(self, latent_pi: th.Tensor) -> Distribution: """ Retrieve action distribution given the latent codes. :param latent_pi: Latent code for the actor :return: Action distribution """ mean_actions = self.action_net(latent_pi) if isinstance(self.action_dist, DiagGaussianDistribution): return self.action_dist.proba_distribution(mean_actions, self.log_std) elif isinstance(self.action_dist, CategoricalDistribution): # Here mean_actions are the logits before the softmax return self.action_dist.proba_distribution(action_logits=mean_actions) elif isinstance(self.action_dist, MultiCategoricalDistribution): # Here mean_actions are the flattened logits return self.action_dist.proba_distribution(action_logits=mean_actions) elif isinstance(self.action_dist, BernoulliDistribution): # Here mean_actions are the logits (before rounding to get the binary actions) return self.action_dist.proba_distribution(action_logits=mean_actions) elif isinstance(self.action_dist, StateDependentNoiseDistribution): return self.action_dist.proba_distribution(mean_actions, self.log_std, latent_pi) elif isinstance(self.action_dist, UniversalGaussianDistribution): if self.sqrt_induced_gaussian: cov_sqrt = self.chol_net(latent_pi) dist = self.action_dist.proba_distribution_from_sqrt( mean_actions, cov_sqrt, latent_pi) mean, chol = get_mean_and_chol(dist, expand=False) self.chol = chol return dist else: chol = self.chol_net(latent_pi) self.chol = chol return self.action_dist.proba_distribution(mean_actions, chol, latent_pi) else: raise ValueError("Invalid action distribution") def _predict(self, observation: th.Tensor, deterministic: bool = False) -> th.Tensor: """ Get the action according to the policy for a given observation. :param observation: :param deterministic: Whether to use stochastic or deterministic actions :return: Taken action according to the policy """ return self.get_distribution(observation).get_actions(deterministic=deterministic) def evaluate_actions(self, obs: th.Tensor, actions: th.Tensor) -> Tuple[th.Tensor, th.Tensor, th.Tensor]: """ Evaluate actions according to the current policy, given the observations. :param obs: :param actions: :return: estimated value, log likelihood of taking those actions and entropy of the action distribution. """ # Preprocess the observation if needed features = self.extract_features(obs) latent_pi, latent_vf = self.mlp_extractor(features) distribution = self._get_action_dist_from_latent(latent_pi) log_prob = distribution.log_prob(actions) values = self.value_net(latent_vf) return values, log_prob, distribution.entropy() def get_distribution(self, obs: th.Tensor) -> Distribution: """ Get the current policy distribution given the observations. :param obs: :return: the action distribution. """ features = self.extract_features(obs) latent_pi = self.mlp_extractor.forward_actor(features) return self._get_action_dist_from_latent(latent_pi) def predict_values(self, obs: th.Tensor) -> th.Tensor: """ Get the estimated values according to the current policy given the observations. :param obs: :return: the estimated values. """ features = self.extract_features(obs) latent_vf = self.mlp_extractor.forward_critic(features) return self.value_net(latent_vf) class ActorCriticCnnPolicy(ActorCriticPolicy): """ Code stolen from SB3 CNN policy class for actor-critic algorithms (has both policy and value prediction). Used by A2C, PPO and the likes. :param observation_space: Observation space :param action_space: Action space :param lr_schedule: Learning rate schedule (could be constant) :param net_arch: The specification of the policy and value networks. :param activation_fn: Activation function :param ortho_init: Whether to use or not orthogonal initialization :param use_sde: Whether to use State Dependent Exploration or not :param log_std_init: Initial value for the log standard deviation :param full_std: Whether to use (n_features x n_actions) parameters for the std instead of only (n_features,) when using gSDE :param sde_net_arch: Network architecture for extracting features when using gSDE. If None, the latent features from the policy will be used. Pass an empty list to use the states as features. :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure a positive standard deviation (cf paper). It allows to keep variance above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough. :param squash_output: Whether to squash the output using a tanh function, this allows to ensure boundaries when using gSDE. :param features_extractor_class: Features extractor to use. :param features_extractor_kwargs: Keyword arguments to pass to the features extractor. :param normalize_images: Whether to normalize images or not, dividing by 255.0 (True by default) :param optimizer_class: The optimizer to use, ``th.optim.Adam`` by default :param optimizer_kwargs: Additional keyword arguments, excluding the learning rate, to pass to the optimizer """ def __init__( self, observation_space: gym.spaces.Space, action_space: gym.spaces.Space, lr_schedule: Schedule, net_arch: Optional[List[Union[int, Dict[str, List[int]]]]] = None, activation_fn: Type[nn.Module] = nn.Tanh, ortho_init: bool = True, use_sde: bool = False, log_std_init: float = 0.0, full_std: bool = True, sde_net_arch: Optional[List[int]] = None, use_expln: bool = False, squash_output: bool = False, features_extractor_class: Type[BaseFeaturesExtractor] = NatureCNN, features_extractor_kwargs: Optional[Dict[str, Any]] = None, normalize_images: bool = True, optimizer_class: Type[th.optim.Optimizer] = th.optim.Adam, optimizer_kwargs: Optional[Dict[str, Any]] = None, ): super().__init__( observation_space, action_space, lr_schedule, net_arch, activation_fn, ortho_init, use_sde, log_std_init, full_std, sde_net_arch, use_expln, squash_output, features_extractor_class, features_extractor_kwargs, normalize_images, optimizer_class, optimizer_kwargs, ) class MultiInputActorCriticPolicy(ActorCriticPolicy): """ Code stolen from SB3 MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction). Used by A2C, PPO and the likes. :param observation_space: Observation space (Tuple) :param action_space: Action space :param lr_schedule: Learning rate schedule (could be constant) :param net_arch: The specification of the policy and value networks. :param activation_fn: Activation function :param ortho_init: Whether to use or not orthogonal initialization :param use_sde: Whether to use State Dependent Exploration or not :param log_std_init: Initial value for the log standard deviation :param full_std: Whether to use (n_features x n_actions) parameters for the std instead of only (n_features,) when using gSDE :param sde_net_arch: Network architecture for extracting features when using gSDE. If None, the latent features from the policy will be used. Pass an empty list to use the states as features. :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure a positive standard deviation (cf paper). It allows to keep variance above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough. :param squash_output: Whether to squash the output using a tanh function, this allows to ensure boundaries when using gSDE. :param features_extractor_class: Uses the CombinedExtractor :param features_extractor_kwargs: Keyword arguments to pass to the feature extractor. :param normalize_images: Whether to normalize images or not, dividing by 255.0 (True by default) :param optimizer_class: The optimizer to use, ``th.optim.Adam`` by default :param optimizer_kwargs: Additional keyword arguments, excluding the learning rate, to pass to the optimizer """ def __init__( self, observation_space: gym.spaces.Dict, action_space: gym.spaces.Space, lr_schedule: Schedule, net_arch: Optional[List[Union[int, Dict[str, List[int]]]]] = None, activation_fn: Type[nn.Module] = nn.Tanh, ortho_init: bool = True, use_sde: bool = False, log_std_init: float = 0.0, full_std: bool = True, sde_net_arch: Optional[List[int]] = None, use_expln: bool = False, squash_output: bool = False, features_extractor_class: Type[BaseFeaturesExtractor] = CombinedExtractor, features_extractor_kwargs: Optional[Dict[str, Any]] = None, normalize_images: bool = True, optimizer_class: Type[th.optim.Optimizer] = th.optim.Adam, optimizer_kwargs: Optional[Dict[str, Any]] = None, ): super().__init__( observation_space, action_space, lr_schedule, net_arch, activation_fn, ortho_init, use_sde, log_std_init, full_std, sde_net_arch, use_expln, squash_output, features_extractor_class, features_extractor_kwargs, normalize_images, optimizer_class, optimizer_kwargs, ) MlpPolicy = ActorCriticPolicy CnnPolicy = ActorCriticCnnPolicy MultiInputPolicy = MultiInputActorCriticPolicy