# Copyright (c) 2021 Robert Bosch GmbH # Author: Fabian Otto # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as published # by the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see . import torch as ch from typing import Tuple from trust_region_projections.models.policy.abstract_gaussian_policy import AbstractGaussianPolicy from trust_region_projections.projections.base_projection_layer import BaseProjectionLayer, mean_projection from trust_region_projections.utils.projection_utils import gaussian_frobenius class FrobeniusProjectionLayer(BaseProjectionLayer): def _trust_region_projection(self, policy: AbstractGaussianPolicy, p: Tuple[ch.Tensor, ch.Tensor], q: Tuple[ch.Tensor, ch.Tensor], eps: ch.Tensor, eps_cov: ch.Tensor, **kwargs): """ Runs Frobenius projection layer and constructs cholesky of covariance Args: policy: policy instance p: current distribution q: old distribution eps: (modified) kl bound/ kl bound for mean part eps_cov: (modified) kl bound for cov part beta: (modified) entropy bound **kwargs: Returns: mean, cov cholesky """ mean, chol = p old_mean, old_chol = q batch_shape = mean.shape[:-1] #################################################################################################################### # precompute mean and cov part of frob projection, which are used for the projection. mean_part, cov_part, cov, cov_old = gaussian_frobenius(policy, p, q, self.scale_prec, True) ################################################################################################################ # mean projection maha/euclidean proj_mean = mean_projection(mean, old_mean, mean_part, eps) ################################################################################################################ # cov projection frobenius cov_mask = cov_part > eps_cov if cov_mask.any(): # alpha = ch.where(fro_norm_sq > eps_cov, ch.sqrt(fro_norm_sq / eps_cov) - 1., ch.tensor(1.)) eta = ch.ones(batch_shape, dtype=chol.dtype, device=chol.device) eta[cov_mask] = ch.sqrt(cov_part[cov_mask] / eps_cov) - 1. eta = ch.max(-eta, eta) new_cov = (cov + ch.einsum('i,ijk->ijk', eta, cov_old)) / (1. + eta + 1e-16)[..., None, None] proj_chol = ch.where(cov_mask[..., None, None], ch.cholesky(new_cov), chol) else: proj_chol = chol return proj_mean, proj_chol def trust_region_value(self, policy, p, q): """ Computes the Frobenius metric between two Gaussian distributions p and q. Args: policy: policy instance p: current distribution q: old distribution Returns: mean and covariance part of Frobenius metric """ return gaussian_frobenius(policy, p, q, self.scale_prec) def get_trust_region_loss(self, policy: AbstractGaussianPolicy, p: Tuple[ch.Tensor, ch.Tensor], proj_p: Tuple[ch.Tensor, ch.Tensor]): mean_diff, _ = self.trust_region_value(policy, p, proj_p) if policy.contextual_std: # Compute MSE here, because we found the Frobenius norm tends to generate values that explode for the cov cov_diff = (p[1] - proj_p[1]).pow(2).sum([-1, -2]) delta_loss = (mean_diff + cov_diff).mean() else: delta_loss = mean_diff.mean() return delta_loss * self.trust_region_coeff