#!/bin/python3 import gym from gym.envs.registration import register import numpy as np import os import time import datetime from stable_baselines3 import SAC, PPO, A2C from stable_baselines3.common.evaluation import evaluate_policy from stable_baselines3.common.policies import ActorCriticCnnPolicy, ActorCriticPolicy, MultiInputActorCriticPolicy from sb3_trl.trl_pg import TRL_PG import columbus #root_path = os.getcwd() root_path = '.' def main(env_name='ColumbusCandyland_Aux10-v0', timesteps=50000, showRes=False, saveModel=True, n_eval_episodes=16): env = gym.make(env_name) test_sde = False ppo = PPO( "MlpPolicy", env, verbose=0, tensorboard_log=root_path+"/logs_tb/"+env_name+"/ppo/", learning_rate=3e-4, gamma=0.99, gae_lambda=0.95, normalize_advantage=True, ent_coef=0.15, # 0.1 vf_coef=0.5, use_sde=False, # False ) trl_pg = TRL_PG( "MlpPolicy", env, verbose=0, tensorboard_log=root_path+"/logs_tb/"+env_name+"/trl_pg/", learning_rate=3e-4, gamma=0.99, gae_lambda=0.95, normalize_advantage=True, ent_coef=0.15, # 0.1 vf_coef=0.5, use_sde=False, # False ) if test_sde: ppo_latent_sde = PPO( "MlpPolicy", env, verbose=0, tensorboard_log=root_path+"/logs_tb/"+env_name+"/ppo_latent_sde/", learning_rate=3e-4, gamma=0.99, gae_lambda=0.95, normalize_advantage=True, ent_coef=0.15, # 0.1 vf_coef=0.5, use_sde=True, # False sde_sample_freq=30*15, # -1 ) trl_pg_latent_sde = TRL_PG( "MlpPolicy", env, verbose=0, tensorboard_log=root_path+"/logs_tb/"+env_name+"/trl_pg_latent_sde/", learning_rate=3e-4, gamma=0.99, gae_lambda=0.95, normalize_advantage=True, ent_coef=0.15, # 0.1 vf_coef=0.5, use_sde=True, # False sde_sample_freq=30*15, # -1 ) # sac_latent_sde = SAC( # "MlpPolicy", # env, # verbose=0, # tensorboard_log=root_path+"/logs_tb/"+env_name+"/sac_latent_sde/", # use_sde=True, # sde_sample_freq=30*15, # ent_coef=0.0016, #0.0032 # gamma=0.99, # 0.95 # learning_rate=0.001 # 0.015 # ) print('TRL_PG:') testModel(trl_pg, timesteps, showRes, saveModel, n_eval_episodes) print('PPO:') testModel(ppo, timesteps, showRes, saveModel, n_eval_episodes) def testModel(model, timesteps, showRes=False, saveModel=False, n_eval_episodes=16): env = model.get_env() model.learn(timesteps) if saveModel: now = datetime.datetime.now().strftime('%d.%m.%Y-%H:%M') loc = root_path+'/models/' + \ model.tensorboard_log.replace( root_path+'/logs_tb/', '').replace('/', '_')+now+'.zip' model.save(loc) if n_eval_episodes: mean_reward, std_reward = evaluate_policy( model, env, n_eval_episodes=n_eval_episodes, deterministic=False) print('Reward: '+str(round(mean_reward, 3)) + '±'+str(round(std_reward, 2))) if showRes: input('') obs = env.reset() # Evaluate the agent episode_reward = 0 while True: time.sleep(1/30) action, _ = model.predict(obs, deterministic=False) obs, reward, done, info = env.step(action) env.render() episode_reward += reward if done: #print("Reward:", episode_reward) episode_reward = 0.0 obs = env.reset() env.reset() if __name__ == '__main__': main('LunarLanderContinuous-v2')