import gym from gym.envs.registration import register import numpy as np import time from stable_baselines3 import SAC, PPO, A2C from stable_baselines3.common.evaluation import evaluate_policy from sb3_trl.trl_pg import TRL_PG from columbus import env register( id='ColumbusTestRay-v0', entry_point=env.ColumbusTestRay, max_episode_steps=30*60*5, ) def main(): #env = gym.make("LunarLander-v2") env = gym.make("ColumbusTestRay-v0") ppo = PPO( "MlpPolicy", env, verbose=1, tensorboard_log="./logs_tb/test/ppo", use_sde=False, ent_coef=0.0001, learning_rate=0.0004 ) ppo_sde = PPO( "MlpPolicy", env, verbose=1, tensorboard_log="./logs_tb/test/ppo_sde/", use_sde=True, sde_sample_freq=30*20, ent_coef=0.000001, learning_rate=0.0003 ) a2c = A2C( "MlpPolicy", env, verbose=1, tensorboard_log="./logs_tb/test/a2c/", ) trl = TRL_PG( "MlpPolicy", env, verbose=0, tensorboard_log="./logs_tb/test/trl_pg/", ) #print('PPO:') #testModel(ppo, 500000, showRes = True, saveModel=True, n_eval_episodes=4) print('PPO_SDE:') testModel(ppo_sde, 100000, showRes = True, saveModel=True, n_eval_episodes=0) #print('A2C:') #testModel(a2c, showRes = True) #print('TRL_PG:') #testModel(trl) def testModel(model, timesteps=100000, showRes=False, saveModel=False, n_eval_episodes=16): env = model.get_env() model.learn(timesteps) if n_eval_episodes: mean_reward, std_reward = evaluate_policy(model, env, n_eval_episodes=n_eval_episodes, deterministic=False) print('Reward: '+str(round(mean_reward,3))+'±'+str(round(std_reward,2))) if showRes: model.save("model") input('') obs = env.reset() # Evaluate the agent episode_reward = 0 for _ in range(1000): time.sleep(1/30) action, _ = model.predict(obs, deterministic=False) obs, reward, done, info = env.step(action) env.render() episode_reward += reward if done: #print("Reward:", episode_reward) episode_reward = 0.0 obs = env.reset() env.reset() if __name__=='__main__': main()