import gym from gym.envs.registration import register import numpy as np import time from stable_baselines3 import SAC, PPO, A2C from stable_baselines3.common.evaluation import evaluate_policy from sb3_trl.trl_pg import TRL_PG from subtrees.columbus import env register( id='ColumbusTest3.1-v0', entry_point=env.ColumbusTest3_1, max_episode_steps=1000, ) def main(): #env = gym.make("LunarLander-v2") env = gym.make("ColumbusTest3.1-v0") ppo = PPO( "MlpPolicy", env, verbose=0, tensorboard_log="./logs_tb/test/", ) a2c = A2C( "MlpPolicy", env, verbose=0, tensorboard_log="./logs_tb/test/", ) trl = TRL_PG( "MlpPolicy", env, verbose=0, tensorboard_log="./logs_tb/test/", ) print('PPO:') testModel(ppo) print('A2C:') testModel(a2c) print('TRL_PG:') testModel(trl) def testModel(model, timesteps=50000, showRes=False): env = model.get_env() model.learn(timesteps) mean_reward, std_reward = evaluate_policy(model, env, n_eval_episodes=16, deterministic=False) print('Reward: '+str(round(mean_reward,3))+'±'+str(round(std_reward,2))) if showRes: obs = env.reset() # Evaluate the agent episode_reward = 0 for _ in range(1000): time.sleep(1/30) action, _ = model.predict(obs, deterministic=False) obs, reward, done, info = env.step(action) env.render() episode_reward += reward if done: #print("Reward:", episode_reward) episode_reward = 0.0 obs = env.reset() env.reset() if __name__=='__main__': main()