from typing import Any, Dict, List, Optional, Tuple, Type, Union import gym import numpy as np import torch as th from torch.nn import functional as F from stable_baselines3.common.buffers import ReplayBuffer from stable_baselines3.common.noise import ActionNoise from stable_baselines3.common.off_policy_algorithm import OffPolicyAlgorithm from stable_baselines3.common.policies import BasePolicy from stable_baselines3.common.type_aliases import GymEnv, MaybeCallback, Schedule from stable_baselines3.common.utils import polyak_update from metastable_baselines.sac.policies import CnnPolicy, MlpPolicy, MultiInputPolicy, SACPolicy from ..misc.distTools import new_dist_like from metastable_projections.projections.base_projection_layer import BaseProjectionLayer from metastable_projections.projections.frob_projection_layer import FrobeniusProjectionLayer from metastable_projections.projections.w2_projection_layer import WassersteinProjectionLayer from metastable_projections.projections.kl_projection_layer import KLProjectionLayer from ..misc.rollout_buffer import GaussianRolloutCollectorAuxclass # CAP the standard deviation of the actor LOG_STD_MAX = 2 LOG_STD_MIN = -20 class SAC(OffPolicyAlgorithm): """ Trust Region Layers (TRL) based on SAC (Soft Actor Critic) This implementation is almost a 1:1-copy of the sb3-code for SAC. Only minor changes have been made to implement Differential Trust Region Layers Description from original SAC implementation: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor, This implementation borrows code from original implementation (https://github.com/haarnoja/sac) from OpenAI Spinning Up (https://github.com/openai/spinningup), from the softlearning repo (https://github.com/rail-berkeley/softlearning/) and from Stable Baselines (https://github.com/hill-a/stable-baselines) Paper: https://arxiv.org/abs/1801.01290 Introduction to SAC: https://spinningup.openai.com/en/latest/algorithms/sac.html Note: we use double q target and not value target as discussed in https://github.com/hill-a/stable-baselines/issues/270 :param policy: The policy model to use (MlpPolicy, CnnPolicy, ...) :param env: The environment to learn from (if registered in Gym, can be str) :param learning_rate: learning rate for adam optimizer, the same learning rate will be used for all networks (Q-Values, Actor and Value function) it can be a function of the current progress remaining (from 1 to 0) :param buffer_size: size of the replay buffer :param learning_starts: how many steps of the model to collect transitions for before learning starts :param batch_size: Minibatch size for each gradient update :param tau: the soft update coefficient ("Polyak update", between 0 and 1) :param gamma: the discount factor :param train_freq: Update the model every ``train_freq`` steps. Alternatively pass a tuple of frequency and unit like ``(5, "step")`` or ``(2, "episode")``. :param gradient_steps: How many gradient steps to do after each rollout (see ``train_freq``) Set to ``-1`` means to do as many gradient steps as steps done in the environment during the rollout. :param action_noise: the action noise type (None by default), this can help for hard exploration problem. Cf common.noise for the different action noise type. :param replay_buffer_class: Replay buffer class to use (for instance ``HerReplayBuffer``). If ``None``, it will be automatically selected. :param replay_buffer_kwargs: Keyword arguments to pass to the replay buffer on creation. :param optimize_memory_usage: Enable a memory efficient variant of the replay buffer at a cost of more complexity. See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195 :param ent_coef: Entropy regularization coefficient. (Equivalent to inverse of reward scale in the original SAC paper.) Controlling exploration/exploitation trade-off. Set it to 'auto' to learn it automatically (and 'auto_0.1' for using 0.1 as initial value) :param target_update_interval: update the target network every ``target_network_update_freq`` gradient steps. :param target_entropy: target entropy when learning ``ent_coef`` (``ent_coef = 'auto'``) :param use_sde: Whether to use generalized State Dependent Exploration (gSDE) instead of action noise exploration (default: False) :param sde_sample_freq: Sample a new noise matrix every n steps when using gSDE Default: -1 (only sample at the beginning of the rollout) :param use_sde_at_warmup: Whether to use gSDE instead of uniform sampling during the warm up phase (before learning starts) :param create_eval_env: Whether to create a second environment that will be used for evaluating the agent periodically. (Only available when passing string for the environment) :param policy_kwargs: additional arguments to be passed to the policy on creation :param verbose: the verbosity level: 0 no output, 1 info, 2 debug :param seed: Seed for the pseudo random generators :param device: Device (cpu, cuda, ...) on which the code should be run. Setting it to auto, the code will be run on the GPU if possible. :param _init_setup_model: Whether or not to build the network at the creation of the instance """ policy_aliases: Dict[str, Type[BasePolicy]] = { "MlpPolicy": MlpPolicy, "CnnPolicy": CnnPolicy, "MultiInputPolicy": MultiInputPolicy, } def __init__( self, policy: Union[str, Type[SACPolicy]], env: Union[GymEnv, str], learning_rate: Union[float, Schedule] = 3e-4, buffer_size: int = 1_000_000, # 1e6 learning_starts: int = 100, batch_size: int = 256, tau: float = 0.005, gamma: float = 0.99, train_freq: Union[int, Tuple[int, str]] = 1, gradient_steps: int = 1, action_noise: Optional[ActionNoise] = None, replay_buffer_class: Optional[ReplayBuffer] = None, replay_buffer_kwargs: Optional[Dict[str, Any]] = None, optimize_memory_usage: bool = False, ent_coef: Union[str, float] = "auto", target_update_interval: int = 1, target_entropy: Union[str, float] = "auto", use_sde: bool = False, sde_sample_freq: int = -1, use_sde_at_warmup: bool = False, tensorboard_log: Optional[str] = None, create_eval_env: bool = False, policy_kwargs: Optional[Dict[str, Any]] = None, verbose: int = 0, seed: Optional[int] = None, device: Union[th.device, str] = "auto", # Different from SAC: # projection: BaseProjectionLayer = BaseProjectionLayer(), projection=None, _init_setup_model: bool = True, ): super().__init__( policy, env, None, # PolicyBase learning_rate, buffer_size, learning_starts, batch_size, tau, gamma, train_freq, gradient_steps, action_noise, replay_buffer_class=replay_buffer_class, replay_buffer_kwargs=replay_buffer_kwargs, policy_kwargs=policy_kwargs, tensorboard_log=tensorboard_log, verbose=verbose, device=device, create_eval_env=create_eval_env, seed=seed, use_sde=use_sde, sde_sample_freq=sde_sample_freq, use_sde_at_warmup=use_sde_at_warmup, optimize_memory_usage=optimize_memory_usage, supported_action_spaces=(gym.spaces.Box), support_multi_env=True, ) self.target_entropy = target_entropy self.log_ent_coef = None # type: Optional[th.Tensor] # Entropy coefficient / Entropy temperature # Inverse of the reward scale self.ent_coef = ent_coef self.target_update_interval = target_update_interval self.ent_coef_optimizer = None # Different from SAC: # self.projection = projection self._global_steps = 0 self.n_steps = buffer_size self.gae_lambda = False if projection != None: print('[!] An projection was supplied! Will be ignored!') if _init_setup_model: self._setup_model() def _setup_model(self) -> None: super()._setup_model() self._create_aliases() # Target entropy is used when learning the entropy coefficient if self.target_entropy == "auto": # automatically set target entropy if needed self.target_entropy = - \ np.prod(self.env.action_space.shape).astype(np.float32) else: # Force conversion # this will also throw an error for unexpected string self.target_entropy = float(self.target_entropy) # The entropy coefficient or entropy can be learned automatically # see Automating Entropy Adjustment for Maximum Entropy RL section # of https://arxiv.org/abs/1812.05905 if isinstance(self.ent_coef, str) and self.ent_coef.startswith("auto"): # Default initial value of ent_coef when learned init_value = 1.0 if "_" in self.ent_coef: init_value = float(self.ent_coef.split("_")[1]) assert init_value > 0.0, "The initial value of ent_coef must be greater than 0" # Note: we optimize the log of the entropy coeff which is slightly different from the paper # as discussed in https://github.com/rail-berkeley/softlearning/issues/37 self.log_ent_coef = th.log( th.ones(1, device=self.device) * init_value).requires_grad_(True) self.ent_coef_optimizer = th.optim.Adam( [self.log_ent_coef], lr=self.lr_schedule(1)) else: # Force conversion to float # this will throw an error if a malformed string (different from 'auto') # is passed self.ent_coef_tensor = th.tensor( float(self.ent_coef)).to(self.device) def _create_aliases(self) -> None: self.actor = self.policy.actor self.critic = self.policy.critic self.critic_target = self.policy.critic_target def train(self, gradient_steps: int, batch_size: int = 64) -> None: # Switch to train mode (this affects batch norm / dropout) self.policy.set_training_mode(True) # Update optimizers learning rate optimizers = [self.actor.optimizer, self.critic.optimizer] if self.ent_coef_optimizer is not None: optimizers += [self.ent_coef_optimizer] # Update learning rate according to lr schedule self._update_learning_rate(optimizers) ent_coef_losses, ent_coefs = [], [] actor_losses, critic_losses = [], [] for gradient_step in range(gradient_steps): # Sample replay buffer replay_data = self.replay_buffer.sample( batch_size, env=self._vec_normalize_env) # This is new compared to SAC. # Calculating the TR-Projections we need to know the step number self._global_steps += 1 # We need to sample because `log_std` may have changed between two gradient steps if self.use_sde: self.actor.reset_noise() ################# # Orig Code: # Action by the current actor for the sampled state # actions_pi, log_prob = self.actor.action_log_prob( # replay_data.observations) # log_prob = log_prob.reshape(-1, 1) act = self.actor features = act.extract_features(replay_data.observations) latent_pi = act.latent_pi(features) mean_actions = act.mu_net(latent_pi) chol = act.chol_net(latent_pi) # Original Implementation to cap the standard deviation chol = th.clamp(chol, LOG_STD_MIN, LOG_STD_MAX) act.chol = chol act_dist = self.actor.action_dist # internal A if self.use_sde: actions_pi = act_dist.actions_from_params( mean_actions, chol, latent_sde=latent_pi) # latent_pi = latent_sde else: actions_pi = act_dist.actions_from_params( mean_actions, chol) p_dist = act_dist.distribution # q_dist = new_dist_like( # p_dist, replay_data.means, replay_data.stds) #proj_p = self.projection(p_dist, q_dist, self._global_steps) proj_p = p_dist log_prob = proj_p.log_prob(actions_pi) log_prob = log_prob.reshape(-1, 1) #################### ent_coef_loss = None if self.ent_coef_optimizer is not None: # Important: detach the variable from the graph # so we don't change it with other losses # see https://github.com/rail-berkeley/softlearning/issues/60 ent_coef = th.exp(self.log_ent_coef.detach()) ent_coef_loss = - \ (self.log_ent_coef * (log_prob + self.target_entropy).detach()).mean() ent_coef_losses.append(ent_coef_loss.item()) else: ent_coef = self.ent_coef_tensor ent_coefs.append(ent_coef.item()) # Optimize entropy coefficient, also called # entropy temperature or alpha in the paper if ent_coef_loss is not None: self.ent_coef_optimizer.zero_grad() ent_coef_loss.backward() self.ent_coef_optimizer.step() with th.no_grad(): # Select action according to policy next_actions, next_log_prob = self.actor.action_log_prob( replay_data.next_observations) # Compute the next Q values: min over all critics targets next_q_values = th.cat(self.critic_target( replay_data.next_observations, next_actions), dim=1) next_q_values, _ = th.min(next_q_values, dim=1, keepdim=True) # add entropy term next_q_values = next_q_values - \ ent_coef * next_log_prob.reshape(-1, 1) # td error + entropy term target_q_values = replay_data.rewards + \ (1 - replay_data.dones) * self.gamma * next_q_values # Get current Q-values estimates for each critic network # using action from the replay buffer current_q_values = self.critic( replay_data.observations, replay_data.actions) projection_loss = th.zeros(1) # Compute critic loss critic_loss_raw = 0.5 * sum(F.mse_loss(current_q, target_q_values) for current_q in current_q_values) critic_loss = critic_loss_raw + projection_loss critic_losses.append(critic_loss.item()) # Optimize the critic self.critic.optimizer.zero_grad() critic_loss.backward() self.critic.optimizer.step() # Compute actor loss # Alternative: actor_loss = th.mean(log_prob - qf1_pi) # Mean over all critic networks q_values_pi = th.cat(self.critic( replay_data.observations, actions_pi), dim=1) min_qf_pi, _ = th.min(q_values_pi, dim=1, keepdim=True) actor_loss = (ent_coef * log_prob - min_qf_pi).mean() actor_losses.append(actor_loss.item()) # Optimize the actor self.actor.optimizer.zero_grad() actor_loss.backward() self.actor.optimizer.step() # Update target networks if gradient_step % self.target_update_interval == 0: polyak_update(self.critic.parameters(), self.critic_target.parameters(), self.tau) self._n_updates += gradient_steps self.logger.record("train/n_updates", self._n_updates, exclude="tensorboard") self.logger.record("train/ent_coef", np.mean(ent_coefs)) self.logger.record("train/actor_loss", np.mean(actor_losses)) self.logger.record("train/critic_loss", np.mean(critic_losses)) if len(ent_coef_losses) > 0: self.logger.record("train/ent_coef_loss", np.mean(ent_coef_losses)) pol = self.policy.actor if hasattr(pol, "log_std"): self.logger.record( "train/std", th.exp(pol.log_std).mean().item()) elif hasattr(pol, "chol"): chol = pol.chol if len(chol.shape) == 1: self.logger.record( "train/std", th.mean(chol).mean().item()) elif len(chol.shape) == 2: self.logger.record( "train/std", th.mean(th.sqrt(th.diagonal(chol.T @ chol, dim1=-2, dim2=-1))).mean().item()) else: self.logger.record( "train/std", th.mean(th.sqrt(th.diagonal(chol.mT @ chol, dim1=-2, dim2=-1))).mean().item()) def learn( self, total_timesteps: int, callback: MaybeCallback = None, log_interval: int = 4, eval_env: Optional[GymEnv] = None, eval_freq: int = -1, n_eval_episodes: int = 5, tb_log_name: str = "SAC", eval_log_path: Optional[str] = None, reset_num_timesteps: bool = True, ) -> OffPolicyAlgorithm: return super().learn( total_timesteps=total_timesteps, callback=callback, log_interval=log_interval, eval_env=eval_env, eval_freq=eval_freq, n_eval_episodes=n_eval_episodes, tb_log_name=tb_log_name, eval_log_path=eval_log_path, reset_num_timesteps=reset_num_timesteps, ) def _excluded_save_params(self) -> List[str]: return super()._excluded_save_params() + ["actor", "critic", "critic_target"] def _get_torch_save_params(self) -> Tuple[List[str], List[str]]: state_dicts = ["policy", "actor.optimizer", "critic.optimizer"] if self.ent_coef_optimizer is not None: saved_pytorch_variables = ["log_ent_coef"] state_dicts.append("ent_coef_optimizer") else: saved_pytorch_variables = ["ent_coef_tensor"] return state_dicts, saved_pytorch_variables