from typing import Any, Dict, List, Optional, Tuple, Union from enum import Enum import torch as th from torch import nn from torch.distributions import Normal, MultivariateNormal from stable_baselines3.common.preprocessing import get_action_dim from stable_baselines3.common.distributions import sum_independent_dims from stable_baselines3.common.distributions import Distribution as SB3_Distribution from stable_baselines3.common.distributions import DiagGaussianDistribution from ..misc.fakeModule import FakeModule # TODO: Full Cov Parameter # TODO: Contextual Cov # TODO: - Scalar # TODO: - Diag # TODO: - Full # TODO: - Hybrid # TODO: Contextual SDE (Scalar + Diag + Full) # TODO: (SqrtInducedCov (Scalar + Diag + Full)) # TODO: (Support Squased Dists (tanh)) class Strength(Enum): NONE = 0 SCALAR = 1 DIAG = 2 FULL = 3 def __init__(self, num): self.num = num @property def foo(self): return self.num class ParametrizationType(Enum): CHOL = 1 ARCHAKOVA = 2 class EnforcePositiveType(Enum): LOG = 1 RELU = 2 SELU = 3 ABS = 4 SQ = 5 class UniversalGaussianDistribution(SB3_Distribution): """ Gaussian distribution with configurable covariance matrix shape and optional contextual parametrization mechanism, for continuous actions. :param action_dim: Dimension of the action space. """ def __init__(self, action_dim: int): super(UniversalGaussianDistribution, self).__init__() self.par_strength = Strength.DIAG self.cov_strength = Strength.DIAG self.par_type = ParametrizationType.CHOL self.enforce_positive_type = EnforcePositiveType.LOG self.distribution = None def proba_distribution_net(self, latent_dim: int, log_std_init: float = 0.0) -> Tuple[nn.Module, nn.Module]: """ Create the layers and parameter that represent the distribution: one output will be the mean of the Gaussian, the other parameter will be the standard deviation (log std in fact to allow negative values) :param latent_dim: Dimension of the last layer of the policy (before the action layer) :param log_std_init: Initial value for the log standard deviation :return: We return two nn.Modules (mean, pseudo_chol). chol can return a díagonal vector when it would only be a diagonal matrix. """ # TODO: Rename pseudo_cov to pseudo_chol mean_actions = nn.Linear(latent_dim, self.action_dim) if self.par_strength == Strength.NONE: if self.cov_strength == Strength.NONE: pseudo_cov_par = th.ones(self.action_dim) * log_std_init elif self.cov_strength == Strength.SCALAR: pseudo_cov_par = th.ones(self.action_dim) * \ nn.Parameter(log_std_init, requires_grad=True) elif self.cov_strength == Strength.DIAG: pseudo_cov_par = nn.Parameter( th.ones(self.action_dim) * log_std_init, requires_grad=True) elif self.cov_strength == Strength.FULL: # TODO: This won't work, need to ensure SPD! # TODO: Off-axis init? pseudo_cov_par = nn.Parameter( th.diag_embed(th.ones(self.action_dim) * log_std_init), requires_grad=True) pseudo_cov = FakeModule(pseudo_cov_par) elif self.par_strength == self.cov_strength: if self.par_strength == Strength.NONE: pseudo_cov = FakeModule(th.ones(self.action_dim)) elif self.par_strength == Strength.SCALAR: # TODO: Does it work like this? Test! std = nn.Linear(latent_dim, 1) pseudo_cov = th.ones(self.action_dim) * std elif self.par_strength == Strength.DIAG: pseudo_cov = nn.Linear(latent_dim, self.action_dim) elif self.par_strength == Strength.FULL: pseudo_cov = self._parameterize_full(latent_dim) elif self.par_strength > self.cov_strength: raise Exception( 'The parameterization can not be stronger than the actual covariance.') else: if self.par_strength == Strength.SCALAR and self.cov_strength == Strength.DIAG: pseudo_cov = self._parameterize_hybrid_from_scalar(latent_dim) elif self.par_strength == Strength.DIAG and self.cov_strength == Strength.FULL: pseudo_cov = self._parameterize_hybrid_from_diag(latent_dim) elif self.par_strength == Strength.SCALAR and self.cov_strength == Strength.FULL: raise Exception( 'That does not even make any sense...') else: raise Exception("This Exception can't happen (I think)") return mean_actions, pseudo_cov def _parameterize_full(self, latent_dim): # TODO: Implement various techniques for full parameterization (forcing SPD) raise Exception( 'Programmer-was-to-lazy-to-implement-this-Exception') def _parameterize_hybrid_from_diag(self, latent_dim): # TODO: Implement the hybrid-method for DIAG -> FULL (parameters for pearson-correlation-matrix) raise Exception( 'Programmer-was-to-lazy-to-implement-this-Exception') def _parameterize_hybrid_from_scalar(self, latent_dim): factor = nn.Linear(latent_dim, 1) par_cov = th.ones(self.action_dim) * \ nn.Parameter(1, requires_grad=True) pseudo_cov = par_cov * factor[0] return pseudo_cov def proba_distribution(self, mean_actions: th.Tensor, pseudo_cov: th.Tensor) -> "UniversalGaussianDistribution": """ Create the distribution given its parameters (mean, pseudo_cov) :param mean_actions: :param pseudo_cov: :return: """ action_std = None # TODO: Needs to be expanded if self.cov_strength == Strength.DIAG: if self.enforce_positive_type == EnforcePositiveType.LOG: action_std = pseudo_cov.exp() if action_std == None: raise Exception('Not yet implemented!') self.distribution = Normal(mean_actions, action_std) if self.distribution == None: raise Exception('Not yet implemented!') return self def log_prob(self, actions: th.Tensor) -> th.Tensor: """ Get the log probabilities of actions according to the distribution. Note that you must first call the ``proba_distribution()`` method. :param actions: :return: """ log_prob = self.distribution.log_prob(actions) return sum_independent_dims(log_prob) def entropy(self) -> th.Tensor: return sum_independent_dims(self.distribution.entropy()) def sample(self) -> th.Tensor: # Reparametrization trick to pass gradients return self.distribution.rsample() def mode(self) -> th.Tensor: return self.distribution.mean def actions_from_params(self, mean_actions: th.Tensor, log_std: th.Tensor, deterministic: bool = False) -> th.Tensor: # Update the proba distribution self.proba_distribution(mean_actions, log_std) return self.get_actions(deterministic=deterministic) def log_prob_from_params(self, mean_actions: th.Tensor, log_std: th.Tensor) -> Tuple[th.Tensor, th.Tensor]: """ Compute the log probability of taking an action given the distribution parameters. :param mean_actions: :param log_std: :return: """ actions = self.actions_from_params(mean_actions, log_std) log_prob = self.log_prob(actions) return actions, log_prob