metastable-baselines/metastable_baselines/distributions/distributions.py
2022-07-16 14:58:29 +02:00

421 lines
18 KiB
Python

from typing import Any, Dict, List, Optional, Tuple, Union
from enum import Enum
import gym
import torch as th
from torch import nn
from torch.distributions import Normal, Independent, MultivariateNormal
from math import pi
from stable_baselines3.common.preprocessing import get_action_dim
from stable_baselines3.common.distributions import sum_independent_dims
from stable_baselines3.common.distributions import Distribution as SB3_Distribution
from stable_baselines3.common.distributions import (
BernoulliDistribution,
CategoricalDistribution,
MultiCategoricalDistribution,
# StateDependentNoiseDistribution,
)
from stable_baselines3.common.distributions import DiagGaussianDistribution
from ..misc.tensor_ops import fill_triangular
# TODO: Integrate and Test what I currently have before adding more complexity
# TODO: Support Squashed Dists (tanh)
# TODO: Contextual Cov
# TODO: - Hybrid
# TODO: Contextual SDE (Scalar + Diag + Full)
# TODO: (SqrtInducedCov (Scalar + Diag + Full))
class Strength(Enum):
NONE = 0
SCALAR = 1
DIAG = 2
FULL = 3
class ParametrizationType(Enum):
NONE = 0
CHOL = 1
SPHERICAL_CHOL = 2
# Not (yet?) implemented:
# GIVENS = 3
# NNLN_EIGEN = 4
class EnforcePositiveType(Enum):
# This need to be implemented in this ugly fashion,
# because cloudpickle does not like more complex enums
NONE = 0
SOFTPLUS = 1
ABS = 2
RELU = 3
LOG = 4
def apply(self, x):
# aaaaaa
return [nn.Identity(), nn.Softplus(beta=1, threshold=20), th.abs, nn.ReLU(inplace=False), th.log][self.value](x)
class ProbSquashingType(Enum):
NONE = 0
TANH = 1
def apply(self, x):
return [nn.Identity(), th.tanh][self.value](x)
def get_legal_setups(allowedEPTs=None, allowedParStrength=None, allowedCovStrength=None, allowedPTs=None, allowedPSTs=None):
allowedEPTs = allowedEPTs or EnforcePositiveType
allowedParStrength = allowedParStrength or Strength
allowedCovStrength = allowedCovStrength or Strength
allowedPTs = allowedPTs or ParametrizationType
allowedPSTs = allowedPSTs or ProbSquashingType
for ps in allowedParStrength:
for cs in allowedCovStrength:
if ps.value > cs.value:
continue
for ept in allowedEPTs:
if cs == Strength.FULL:
for pt in allowedPTs:
if pt != ParametrizationType.NONE:
yield (ps, cs, ept, pt)
else:
yield (ps, cs, ept, ParametrizationType.NONE)
def make_proba_distribution(
action_space: gym.spaces.Space, use_sde: bool = False, dist_kwargs: Optional[Dict[str, Any]] = None
) -> SB3_Distribution:
"""
Return an instance of Distribution for the correct type of action space
:param action_space: the input action space
:param use_sde: Force the use of StateDependentNoiseDistribution
instead of DiagGaussianDistribution
:param dist_kwargs: Keyword arguments to pass to the probability distribution
:return: the appropriate Distribution object
"""
if dist_kwargs is None:
dist_kwargs = {}
if isinstance(action_space, gym.spaces.Box):
assert len(
action_space.shape) == 1, "Error: the action space must be a vector"
return UniversalGaussianDistribution(get_action_dim(action_space), use_sde=use_sde, **dist_kwargs)
elif isinstance(action_space, gym.spaces.Discrete):
return CategoricalDistribution(action_space.n, **dist_kwargs)
elif isinstance(action_space, gym.spaces.MultiDiscrete):
return MultiCategoricalDistribution(action_space.nvec, **dist_kwargs)
elif isinstance(action_space, gym.spaces.MultiBinary):
return BernoulliDistribution(action_space.n, **dist_kwargs)
else:
raise NotImplementedError(
"Error: probability distribution, not implemented for action space"
f"of type {type(action_space)}."
" Must be of type Gym Spaces: Box, Discrete, MultiDiscrete or MultiBinary."
)
class UniversalGaussianDistribution(SB3_Distribution):
"""
Gaussian distribution with configurable covariance matrix shape and optional contextual parametrization mechanism, for continuous actions.
:param action_dim: Dimension of the action space.
"""
def __init__(self, action_dim: int, use_sde: bool = False, neural_strength: Strength = Strength.DIAG, cov_strength: Strength = Strength.DIAG, parameterization_type: ParametrizationType = ParametrizationType.NONE, enforce_positive_type: EnforcePositiveType = EnforcePositiveType.ABS, prob_squashing_type: ProbSquashingType = ProbSquashingType.NONE):
super(UniversalGaussianDistribution, self).__init__()
self.action_dim = action_dim
self.par_strength = neural_strength
self.cov_strength = cov_strength
self.par_type = parameterization_type
self.enforce_positive_type = enforce_positive_type
self.prob_squashing_type = prob_squashing_type
self.distribution = None
if self.prob_squashing_type != ProbSquashingType.NONE:
raise Exception('ProbSquasing is not yet implmenented!')
if use_sde:
raise Exception('SDE is not yet implemented')
assert (parameterization_type != ParametrizationType.NONE) == (
cov_strength == Strength.FULL), 'You should set an ParameterizationType iff the cov-strength is full'
def new_dist_like_me(self, mean: th.Tensor, chol: th.Tensor):
p = self.distribution
if isinstance(p, Independent):
if p.stddev.shape != chol.shape:
chol = th.diagonal(chol, dim1=1, dim2=2)
np = Independent(Normal(mean, chol), 1)
elif isinstance(p, MultivariateNormal):
np = MultivariateNormal(mean, scale_tril=chol)
new = UniversalGaussianDistribution(self.action_dim, neural_strength=self.par_strength, cov_strength=self.cov_strength,
parameterization_type=self.par_type, enforce_positive_type=self.enforce_positive_type, prob_squashing_type=self.prob_squashing_type)
new.distribution = np
return new
def proba_distribution_net(self, latent_dim: int, latent_sde_dim: int, std_init: float = 0.0) -> Tuple[nn.Module, nn.Module]:
"""
Create the layers and parameter that represent the distribution:
one output will be the mean of the Gaussian, the other parameter will be the
standard deviation
:param latent_dim: Dimension of the last layer of the policy (before the action layer)
:param std_init: Initial value for the standard deviation
:return: We return two nn.Modules (mean, chol). chol can be a vector if the full chol would be a diagonal.
"""
assert std_init >= 0.0, "std can not be initialized to a negative value."
# TODO: Implement SDE
self.latent_sde_dim = latent_sde_dim
mean_actions = nn.Linear(latent_dim, self.action_dim)
chol = CholNet(latent_dim, self.action_dim, std_init, self.par_strength,
self.cov_strength, self.par_type, self.enforce_positive_type, self.prob_squashing_type)
return mean_actions, chol
def proba_distribution(self, mean_actions: th.Tensor, chol: th.Tensor, latent_pi: nn.Module) -> "UniversalGaussianDistribution":
"""
Create the distribution given its parameters (mean, chol)
:param mean_actions:
:param chol:
:return:
"""
# TODO: latent_pi is for SDE, implement.
if self.cov_strength in [Strength.NONE, Strength.SCALAR, Strength.DIAG]:
self.distribution = Independent(Normal(mean_actions, chol), 1)
elif self.cov_strength in [Strength.FULL]:
self.distribution = MultivariateNormal(
mean_actions, scale_tril=chol)
if self.distribution == None:
raise Exception('Unable to create torch distribution')
return self
def log_prob(self, actions: th.Tensor) -> th.Tensor:
"""
Get the log probabilities of actions according to the distribution.
Note that you must first call the ``proba_distribution()`` method.
:param actions:
:return:
"""
log_prob = self.distribution.log_prob(actions)
return log_prob
def entropy(self) -> th.Tensor:
return self.distribution.entropy()
def sample(self) -> th.Tensor:
# Reparametrization trick to pass gradients
return self.distribution.rsample()
def mode(self) -> th.Tensor:
return self.distribution.mean
def actions_from_params(self, mean_actions: th.Tensor, log_std: th.Tensor, deterministic: bool = False) -> th.Tensor:
# Update the proba distribution
self.proba_distribution(mean_actions, log_std)
return self.get_actions(deterministic=deterministic)
def log_prob_from_params(self, mean_actions: th.Tensor, log_std: th.Tensor) -> Tuple[th.Tensor, th.Tensor]:
"""
Compute the log probability of taking an action
given the distribution parameters.
:param mean_actions:
:param log_std:
:return:
"""
actions = self.actions_from_params(mean_actions, log_std)
log_prob = self.log_prob(actions)
return actions, log_prob
class CholNet(nn.Module):
def __init__(self, latent_dim: int, action_dim: int, std_init: float, par_strength: Strength, cov_strength: Strength, par_type: ParametrizationType, enforce_positive_type: EnforcePositiveType, prob_squashing_type: ProbSquashingType):
super().__init__()
self.latent_dim = latent_dim
self.action_dim = action_dim
self.par_strength = par_strength
self.cov_strength = cov_strength
self.par_type = par_type
self.enforce_positive_type = enforce_positive_type
self.prob_squashing_type = prob_squashing_type
self._flat_chol_len = action_dim * (action_dim + 1) // 2
# Yes, this is ugly.
# But I don't know how this mess could be elegantly abstracted away...
if self.par_strength == Strength.NONE:
if self.cov_strength == Strength.NONE:
self.chol = th.ones(self.action_dim) * std_init
elif self.cov_strength == Strength.SCALAR:
self.param = nn.Parameter(
th.Tensor([std_init]), requires_grad=True)
elif self.cov_strength == Strength.DIAG:
self.params = nn.Parameter(
th.ones(self.action_dim) * std_init, requires_grad=True)
elif self.cov_strength == Strength.FULL:
# TODO: Init Off-axis differently?
self.params = nn.Parameter(
th.ones(self._full_params_len) * std_init, requires_grad=True)
elif self.par_strength == self.cov_strength:
if self.par_strength == Strength.SCALAR:
self.std = nn.Linear(latent_dim, 1)
elif self.par_strength == Strength.DIAG:
self.diag_chol = nn.Linear(latent_dim, self.action_dim)
elif self.par_strength == Strength.FULL:
self.params = nn.Linear(latent_dim, self._full_params_len)
elif self.par_strength.value > self.cov_strength.value:
raise Exception(
'The parameterization can not be stronger than the actual covariance.')
else:
if self.par_strength == Strength.SCALAR and self.cov_strength == Strength.DIAG:
self.factor = nn.Linear(latent_dim, 1)
self.param = nn.Parameter(
th.ones(self.action_dim), requires_grad=True)
elif self.par_strength == Strength.DIAG and self.cov_strength == Strength.FULL:
if self.enforce_positive_type == EnforcePositiveType.NONE:
raise Exception(
'For Hybrid[Diag=>Full] enforce_positive_type has to be not NONE. Otherwise required SPD-contraint can not be ensured for cov.')
self.stds = nn.Linear(latent_dim, self.action_dim)
self.padder = th.nn.ZeroPad2d((0, 1, 1, 0))
# TODO: Init Non-zero?
self.params = nn.Parameter(
th.ones(self._full_params_len - self.action_dim) * 0, requires_grad=True)
elif self.par_strength == Strength.SCALAR and self.cov_strength == Strength.FULL:
self.factor = nn.Linear(latent_dim, 1)
# TODO: Init Off-axis differently?
self.params = nn.Parameter(
th.ones(self._full_params_len) * std_init, requires_grad=True)
else:
raise Exception("This Exception can't happen")
def forward(self, x: th.Tensor) -> th.Tensor:
# Ugly mess pt.2:
if self.par_strength == Strength.NONE:
if self.cov_strength == Strength.NONE:
return self.chol
elif self.cov_strength == Strength.SCALAR:
return self._ensure_positive_func(
th.ones(self.action_dim) * self.param[0])
elif self.cov_strength == Strength.DIAG:
return self._ensure_positive_func(self.params)
elif self.cov_strength == Strength.FULL:
return self._parameterize_full(self.params)
elif self.par_strength == self.cov_strength:
if self.par_strength == Strength.SCALAR:
std = self.std(x)
diag_chol = th.ones(self.action_dim) * std
return self._ensure_positive_func(diag_chol)
elif self.par_strength == Strength.DIAG:
diag_chol = self.diag_chol(x)
return self._ensure_positive_func(diag_chol)
elif self.par_strength == Strength.FULL:
params = self.params(x)
return self._parameterize_full(params)
else:
if self.par_strength == Strength.SCALAR and self.cov_strength == Strength.DIAG:
factor = self.factor(x)[0]
diag_chol = self._ensure_positive_func(
self.param * factor)
return diag_chol
elif self.par_strength == Strength.DIAG and self.cov_strength == Strength.FULL:
# TODO: Maybe possible to improve speed and stability by making conversion from pearson correlation + stds to cov in cholesky-form.
stds = self._ensure_positive_func(self.stds(x))
smol = self._parameterize_full(self.params)
big = self.padder(smol)
pearson_cor_chol = big + th.eye(stds.shape[-1])
pearson_cor = pearson_cor_chol.T @ pearson_cor_chol
cov = stds.T * pearson_cor * stds
chol = th.linalg.cholesky(cov)
return chol
elif self.par_strength == Strength.SCALAR and self.cov_strength == Strength.FULL:
factor = self.factor(x)
return self._parameterize_full(self.params * factor[0])
raise Exception()
@property
def _full_params_len(self):
if self.par_type == ParametrizationType.CHOL:
return self._flat_chol_len
elif self.par_type == ParametrizationType.SPHERICAL_CHOL:
return self._flat_chol_len
raise Exception()
def _parameterize_full(self, params):
if self.par_type == ParametrizationType.CHOL:
return self._chol_from_flat(params)
elif self.par_type == ParametrizationType.SPHERICAL_CHOL:
return self._chol_from_flat_sphe_chol(params)
raise Exception()
def _chol_from_flat(self, flat_chol):
chol = fill_triangular(flat_chol)
return self._ensure_diagonal_positive(chol)
def _chol_from_flat_sphe_chol(self, flat_sphe_chol):
pos_flat_sphe_chol = self._ensure_positive_func(flat_sphe_chol)
sphe_chol = fill_triangular(pos_flat_sphe_chol)
chol = self._chol_from_sphe_chol(sphe_chol)
return chol
def _chol_from_sphe_chol(self, sphe_chol):
# TODO: Test with batched data
# TODO: Make efficient more
# Note:
# We must should ensure:
# S[i,1] > 0 where i = 1..n
# S[i,j] e (0, pi) where i = 2..n, j = 2..i
# We already ensure S > 0 in _chol_from_flat_sphe_chol
# We ensure < pi by applying tanh*pi to all applicable elements
S = sphe_chol
n = self.action_dim
L = th.zeros_like(sphe_chol)
for i in range(n):
t = 1
#s = ''
for j in range(i+1):
maybe_cos = 1
#s_maybe_cos = ''
if i != j:
maybe_cos = th.cos(th.tanh(S[i, j+1])*pi)
s_maybe_cos = 'cos([l_'+str(i+1)+']_'+str(j+2)+')'
L[i, j] = S[i, 0] * t * maybe_cos
# print('[L_'+str(i+1)+']_'+str(j+1) +
# '=[l_'+str(i+1)+']_1'+s+s_maybe_cos)
if j <= i and j < n-1 and i < n:
t *= th.sin(th.tanh(S[i, j+1])*pi)
#s += 'sin([l_'+str(i+1)+']_'+str(j+2)+')'
return L
def _ensure_positive_func(self, x):
return self.enforce_positive_type.apply(x)
def _ensure_diagonal_positive(self, chol):
if len(chol.shape) == 1:
# If our chol is a vector (representing a diagonal chol)
return self._ensure_positive_func(chol)
return chol.tril(-1) + self._ensure_positive_func(chol.diagonal(dim1=-2,
dim2=-1)).diag_embed() + chol.triu(1)
def string(self):
# TODO
return '<CholNet />'
AnyDistribution = Union[SB3_Distribution, UniversalGaussianDistribution]