84 lines
3.7 KiB
Python
84 lines
3.7 KiB
Python
# Copyright (c) 2021 Robert Bosch GmbH
|
|
# Author: Fabian Otto
|
|
#
|
|
# This program is free software: you can redistribute it and/or modify
|
|
# it under the terms of the GNU Affero General Public License as published
|
|
# by the Free Software Foundation, either version 3 of the License, or
|
|
# (at your option) any later version.
|
|
#
|
|
# This program is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
# GNU Affero General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU Affero General Public License
|
|
# along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
|
|
import torch as ch
|
|
from typing import Tuple
|
|
|
|
from trust_region_projections.models.policy.abstract_gaussian_policy import AbstractGaussianPolicy
|
|
from trust_region_projections.projections.base_projection_layer import BaseProjectionLayer, mean_projection
|
|
from trust_region_projections.utils.projection_utils import gaussian_wasserstein_commutative
|
|
|
|
|
|
class WassersteinProjectionLayer(BaseProjectionLayer):
|
|
|
|
def _trust_region_projection(self, policy: AbstractGaussianPolicy, p: Tuple[ch.Tensor, ch.Tensor],
|
|
q: Tuple[ch.Tensor, ch.Tensor], eps: ch.Tensor, eps_cov: ch.Tensor, **kwargs):
|
|
"""
|
|
Runs commutative Wasserstein projection layer and constructs sqrt of covariance
|
|
Args:
|
|
policy: policy instance
|
|
p: current distribution
|
|
q: old distribution
|
|
eps: (modified) kl bound/ kl bound for mean part
|
|
eps_cov: (modified) kl bound for cov part
|
|
**kwargs:
|
|
|
|
Returns:
|
|
mean, cov sqrt
|
|
"""
|
|
mean, sqrt = p
|
|
old_mean, old_sqrt = q
|
|
batch_shape = mean.shape[:-1]
|
|
|
|
####################################################################################################################
|
|
# precompute mean and cov part of W2, which are used for the projection.
|
|
# Both parts differ based on precision scaling.
|
|
# If activated, the mean part is the maha distance and the cov has a more complex term in the inner parenthesis.
|
|
mean_part, cov_part = gaussian_wasserstein_commutative(policy, p, q, self.scale_prec)
|
|
|
|
####################################################################################################################
|
|
# project mean (w/ or w/o precision scaling)
|
|
proj_mean = mean_projection(mean, old_mean, mean_part, eps)
|
|
|
|
####################################################################################################################
|
|
# project covariance (w/ or w/o precision scaling)
|
|
|
|
cov_mask = cov_part > eps_cov
|
|
|
|
if cov_mask.any():
|
|
# gradient issue with ch.where, it executes both paths and gives NaN gradient.
|
|
eta = ch.ones(batch_shape, dtype=sqrt.dtype, device=sqrt.device)
|
|
eta[cov_mask] = ch.sqrt(cov_part[cov_mask] / eps_cov) - 1.
|
|
eta = ch.max(-eta, eta)
|
|
|
|
new_sqrt = (sqrt + ch.einsum('i,ijk->ijk', eta, old_sqrt)) / (1. + eta + 1e-16)[..., None, None]
|
|
proj_sqrt = ch.where(cov_mask[..., None, None], new_sqrt, sqrt)
|
|
else:
|
|
proj_sqrt = sqrt
|
|
|
|
return proj_mean, proj_sqrt
|
|
|
|
def trust_region_value(self, policy, p, q):
|
|
"""
|
|
Computes the Wasserstein distance between two Gaussian distributions p and q.
|
|
Args:
|
|
policy: policy instance
|
|
p: current distribution
|
|
q: old distribution
|
|
Returns:
|
|
mean and covariance part of Wasserstein distance
|
|
"""
|
|
return gaussian_wasserstein_commutative(policy, p, q, scale_prec=self.scale_prec) |