325 lines
15 KiB
Python
325 lines
15 KiB
Python
from typing import Any, Dict, List, Optional, Tuple, Type, Union
|
|
|
|
import gym
|
|
import numpy as np
|
|
import torch as th
|
|
from torch.nn import functional as F
|
|
|
|
from stable_baselines3.common.buffers import ReplayBuffer
|
|
from stable_baselines3.common.noise import ActionNoise
|
|
from stable_baselines3.common.off_policy_algorithm import OffPolicyAlgorithm
|
|
from stable_baselines3.common.policies import BasePolicy
|
|
from stable_baselines3.common.type_aliases import GymEnv, MaybeCallback, Schedule
|
|
from stable_baselines3.common.utils import polyak_update
|
|
from stable_baselines3.sac.policies import CnnPolicy, MlpPolicy, MultiInputPolicy, SACPolicy
|
|
|
|
|
|
class TRL_SAC(OffPolicyAlgorithm):
|
|
"""
|
|
Trust Region Layers (TRL) based on SAC (Soft Actor Critic)
|
|
This implementation is almost a 1:1-copy of the sb3-code for SAC.
|
|
Only minor changes have been made to implement Differential Trust Region Layers
|
|
|
|
Description from original SAC implementation:
|
|
Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor,
|
|
This implementation borrows code from original implementation (https://github.com/haarnoja/sac)
|
|
from OpenAI Spinning Up (https://github.com/openai/spinningup), from the softlearning repo
|
|
(https://github.com/rail-berkeley/softlearning/)
|
|
and from Stable Baselines (https://github.com/hill-a/stable-baselines)
|
|
Paper: https://arxiv.org/abs/1801.01290
|
|
Introduction to SAC: https://spinningup.openai.com/en/latest/algorithms/sac.html
|
|
|
|
Note: we use double q target and not value target as discussed
|
|
in https://github.com/hill-a/stable-baselines/issues/270
|
|
|
|
:param policy: The policy model to use (MlpPolicy, CnnPolicy, ...)
|
|
:param env: The environment to learn from (if registered in Gym, can be str)
|
|
:param learning_rate: learning rate for adam optimizer,
|
|
the same learning rate will be used for all networks (Q-Values, Actor and Value function)
|
|
it can be a function of the current progress remaining (from 1 to 0)
|
|
:param buffer_size: size of the replay buffer
|
|
:param learning_starts: how many steps of the model to collect transitions for before learning starts
|
|
:param batch_size: Minibatch size for each gradient update
|
|
:param tau: the soft update coefficient ("Polyak update", between 0 and 1)
|
|
:param gamma: the discount factor
|
|
:param train_freq: Update the model every ``train_freq`` steps. Alternatively pass a tuple of frequency and unit
|
|
like ``(5, "step")`` or ``(2, "episode")``.
|
|
:param gradient_steps: How many gradient steps to do after each rollout (see ``train_freq``)
|
|
Set to ``-1`` means to do as many gradient steps as steps done in the environment
|
|
during the rollout.
|
|
:param action_noise: the action noise type (None by default), this can help
|
|
for hard exploration problem. Cf common.noise for the different action noise type.
|
|
:param replay_buffer_class: Replay buffer class to use (for instance ``HerReplayBuffer``).
|
|
If ``None``, it will be automatically selected.
|
|
:param replay_buffer_kwargs: Keyword arguments to pass to the replay buffer on creation.
|
|
:param optimize_memory_usage: Enable a memory efficient variant of the replay buffer
|
|
at a cost of more complexity.
|
|
See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195
|
|
:param ent_coef: Entropy regularization coefficient. (Equivalent to
|
|
inverse of reward scale in the original SAC paper.) Controlling exploration/exploitation trade-off.
|
|
Set it to 'auto' to learn it automatically (and 'auto_0.1' for using 0.1 as initial value)
|
|
:param target_update_interval: update the target network every ``target_network_update_freq``
|
|
gradient steps.
|
|
:param target_entropy: target entropy when learning ``ent_coef`` (``ent_coef = 'auto'``)
|
|
:param use_sde: Whether to use generalized State Dependent Exploration (gSDE)
|
|
instead of action noise exploration (default: False)
|
|
:param sde_sample_freq: Sample a new noise matrix every n steps when using gSDE
|
|
Default: -1 (only sample at the beginning of the rollout)
|
|
:param use_sde_at_warmup: Whether to use gSDE instead of uniform sampling
|
|
during the warm up phase (before learning starts)
|
|
:param create_eval_env: Whether to create a second environment that will be
|
|
used for evaluating the agent periodically. (Only available when passing string for the environment)
|
|
:param policy_kwargs: additional arguments to be passed to the policy on creation
|
|
:param verbose: the verbosity level: 0 no output, 1 info, 2 debug
|
|
:param seed: Seed for the pseudo random generators
|
|
:param device: Device (cpu, cuda, ...) on which the code should be run.
|
|
Setting it to auto, the code will be run on the GPU if possible.
|
|
:param _init_setup_model: Whether or not to build the network at the creation of the instance
|
|
"""
|
|
|
|
policy_aliases: Dict[str, Type[BasePolicy]] = {
|
|
"MlpPolicy": MlpPolicy,
|
|
"CnnPolicy": CnnPolicy,
|
|
"MultiInputPolicy": MultiInputPolicy,
|
|
}
|
|
|
|
def __init__(
|
|
self,
|
|
policy: Union[str, Type[SACPolicy]],
|
|
env: Union[GymEnv, str],
|
|
learning_rate: Union[float, Schedule] = 3e-4,
|
|
buffer_size: int = 1_000_000, # 1e6
|
|
learning_starts: int = 100,
|
|
batch_size: int = 256,
|
|
tau: float = 0.005,
|
|
gamma: float = 0.99,
|
|
train_freq: Union[int, Tuple[int, str]] = 1,
|
|
gradient_steps: int = 1,
|
|
action_noise: Optional[ActionNoise] = None,
|
|
replay_buffer_class: Optional[ReplayBuffer] = None,
|
|
replay_buffer_kwargs: Optional[Dict[str, Any]] = None,
|
|
optimize_memory_usage: bool = False,
|
|
ent_coef: Union[str, float] = "auto",
|
|
target_update_interval: int = 1,
|
|
target_entropy: Union[str, float] = "auto",
|
|
use_sde: bool = False,
|
|
sde_sample_freq: int = -1,
|
|
use_sde_at_warmup: bool = False,
|
|
tensorboard_log: Optional[str] = None,
|
|
create_eval_env: bool = False,
|
|
policy_kwargs: Optional[Dict[str, Any]] = None,
|
|
verbose: int = 0,
|
|
seed: Optional[int] = None,
|
|
device: Union[th.device, str] = "auto",
|
|
_init_setup_model: bool = True,
|
|
):
|
|
|
|
super().__init__(
|
|
policy,
|
|
env,
|
|
learning_rate,
|
|
buffer_size,
|
|
learning_starts,
|
|
batch_size,
|
|
tau,
|
|
gamma,
|
|
train_freq,
|
|
gradient_steps,
|
|
action_noise,
|
|
replay_buffer_class=replay_buffer_class,
|
|
replay_buffer_kwargs=replay_buffer_kwargs,
|
|
policy_kwargs=policy_kwargs,
|
|
tensorboard_log=tensorboard_log,
|
|
verbose=verbose,
|
|
device=device,
|
|
create_eval_env=create_eval_env,
|
|
seed=seed,
|
|
use_sde=use_sde,
|
|
sde_sample_freq=sde_sample_freq,
|
|
use_sde_at_warmup=use_sde_at_warmup,
|
|
optimize_memory_usage=optimize_memory_usage,
|
|
supported_action_spaces=(gym.spaces.Box),
|
|
support_multi_env=True,
|
|
)
|
|
|
|
self.target_entropy = target_entropy
|
|
self.log_ent_coef = None # type: Optional[th.Tensor]
|
|
# Entropy coefficient / Entropy temperature
|
|
# Inverse of the reward scale
|
|
self.ent_coef = ent_coef
|
|
self.target_update_interval = target_update_interval
|
|
self.ent_coef_optimizer = None
|
|
|
|
if _init_setup_model:
|
|
self._setup_model()
|
|
|
|
def _setup_model(self) -> None:
|
|
super()._setup_model()
|
|
self._create_aliases()
|
|
# Target entropy is used when learning the entropy coefficient
|
|
if self.target_entropy == "auto":
|
|
# automatically set target entropy if needed
|
|
self.target_entropy = -np.prod(self.env.action_space.shape).astype(np.float32)
|
|
else:
|
|
# Force conversion
|
|
# this will also throw an error for unexpected string
|
|
self.target_entropy = float(self.target_entropy)
|
|
|
|
# The entropy coefficient or entropy can be learned automatically
|
|
# see Automating Entropy Adjustment for Maximum Entropy RL section
|
|
# of https://arxiv.org/abs/1812.05905
|
|
if isinstance(self.ent_coef, str) and self.ent_coef.startswith("auto"):
|
|
# Default initial value of ent_coef when learned
|
|
init_value = 1.0
|
|
if "_" in self.ent_coef:
|
|
init_value = float(self.ent_coef.split("_")[1])
|
|
assert init_value > 0.0, "The initial value of ent_coef must be greater than 0"
|
|
|
|
# Note: we optimize the log of the entropy coeff which is slightly different from the paper
|
|
# as discussed in https://github.com/rail-berkeley/softlearning/issues/37
|
|
self.log_ent_coef = th.log(th.ones(1, device=self.device) * init_value).requires_grad_(True)
|
|
self.ent_coef_optimizer = th.optim.Adam([self.log_ent_coef], lr=self.lr_schedule(1))
|
|
else:
|
|
# Force conversion to float
|
|
# this will throw an error if a malformed string (different from 'auto')
|
|
# is passed
|
|
self.ent_coef_tensor = th.tensor(float(self.ent_coef)).to(self.device)
|
|
|
|
def _create_aliases(self) -> None:
|
|
self.actor = self.policy.actor
|
|
self.critic = self.policy.critic
|
|
self.critic_target = self.policy.critic_target
|
|
|
|
def train(self, gradient_steps: int, batch_size: int = 64) -> None:
|
|
# Switch to train mode (this affects batch norm / dropout)
|
|
self.policy.set_training_mode(True)
|
|
# Update optimizers learning rate
|
|
optimizers = [self.actor.optimizer, self.critic.optimizer]
|
|
if self.ent_coef_optimizer is not None:
|
|
optimizers += [self.ent_coef_optimizer]
|
|
|
|
# Update learning rate according to lr schedule
|
|
self._update_learning_rate(optimizers)
|
|
|
|
ent_coef_losses, ent_coefs = [], []
|
|
actor_losses, critic_losses = [], []
|
|
|
|
for gradient_step in range(gradient_steps):
|
|
# Sample replay buffer
|
|
replay_data = self.replay_buffer.sample(batch_size, env=self._vec_normalize_env)
|
|
|
|
# We need to sample because `log_std` may have changed between two gradient steps
|
|
if self.use_sde:
|
|
self.actor.reset_noise()
|
|
|
|
# Action by the current actor for the sampled state
|
|
actions_pi, log_prob = self.actor.action_log_prob(replay_data.observations)
|
|
log_prob = log_prob.reshape(-1, 1)
|
|
|
|
ent_coef_loss = None
|
|
if self.ent_coef_optimizer is not None:
|
|
# Important: detach the variable from the graph
|
|
# so we don't change it with other losses
|
|
# see https://github.com/rail-berkeley/softlearning/issues/60
|
|
ent_coef = th.exp(self.log_ent_coef.detach())
|
|
ent_coef_loss = -(self.log_ent_coef * (log_prob + self.target_entropy).detach()).mean()
|
|
ent_coef_losses.append(ent_coef_loss.item())
|
|
else:
|
|
ent_coef = self.ent_coef_tensor
|
|
|
|
ent_coefs.append(ent_coef.item())
|
|
|
|
# Optimize entropy coefficient, also called
|
|
# entropy temperature or alpha in the paper
|
|
if ent_coef_loss is not None:
|
|
self.ent_coef_optimizer.zero_grad()
|
|
ent_coef_loss.backward()
|
|
self.ent_coef_optimizer.step()
|
|
|
|
with th.no_grad():
|
|
# Select action according to policy
|
|
next_actions, next_log_prob = self.actor.action_log_prob(replay_data.next_observations)
|
|
# Compute the next Q values: min over all critics targets
|
|
next_q_values = th.cat(self.critic_target(replay_data.next_observations, next_actions), dim=1)
|
|
next_q_values, _ = th.min(next_q_values, dim=1, keepdim=True)
|
|
# add entropy term
|
|
next_q_values = next_q_values - ent_coef * next_log_prob.reshape(-1, 1)
|
|
# td error + entropy term
|
|
target_q_values = replay_data.rewards + (1 - replay_data.dones) * self.gamma * next_q_values
|
|
|
|
# Get current Q-values estimates for each critic network
|
|
# using action from the replay buffer
|
|
current_q_values = self.critic(replay_data.observations, replay_data.actions)
|
|
|
|
# Compute critic loss
|
|
critic_loss = 0.5 * sum(F.mse_loss(current_q, target_q_values) for current_q in current_q_values)
|
|
critic_losses.append(critic_loss.item())
|
|
|
|
# Optimize the critic
|
|
self.critic.optimizer.zero_grad()
|
|
critic_loss.backward()
|
|
self.critic.optimizer.step()
|
|
|
|
# Compute actor loss
|
|
# Alternative: actor_loss = th.mean(log_prob - qf1_pi)
|
|
# Mean over all critic networks
|
|
q_values_pi = th.cat(self.critic(replay_data.observations, actions_pi), dim=1)
|
|
min_qf_pi, _ = th.min(q_values_pi, dim=1, keepdim=True)
|
|
actor_loss = (ent_coef * log_prob - min_qf_pi).mean()
|
|
actor_losses.append(actor_loss.item())
|
|
|
|
# Optimize the actor
|
|
self.actor.optimizer.zero_grad()
|
|
actor_loss.backward()
|
|
self.actor.optimizer.step()
|
|
|
|
# Update target networks
|
|
if gradient_step % self.target_update_interval == 0:
|
|
polyak_update(self.critic.parameters(), self.critic_target.parameters(), self.tau)
|
|
|
|
self._n_updates += gradient_steps
|
|
|
|
self.logger.record("train/n_updates", self._n_updates, exclude="tensorboard")
|
|
self.logger.record("train/ent_coef", np.mean(ent_coefs))
|
|
self.logger.record("train/actor_loss", np.mean(actor_losses))
|
|
self.logger.record("train/critic_loss", np.mean(critic_losses))
|
|
if len(ent_coef_losses) > 0:
|
|
self.logger.record("train/ent_coef_loss", np.mean(ent_coef_losses))
|
|
|
|
def learn(
|
|
self,
|
|
total_timesteps: int,
|
|
callback: MaybeCallback = None,
|
|
log_interval: int = 4,
|
|
eval_env: Optional[GymEnv] = None,
|
|
eval_freq: int = -1,
|
|
n_eval_episodes: int = 5,
|
|
tb_log_name: str = "SAC",
|
|
eval_log_path: Optional[str] = None,
|
|
reset_num_timesteps: bool = True,
|
|
) -> OffPolicyAlgorithm:
|
|
|
|
return super().learn(
|
|
total_timesteps=total_timesteps,
|
|
callback=callback,
|
|
log_interval=log_interval,
|
|
eval_env=eval_env,
|
|
eval_freq=eval_freq,
|
|
n_eval_episodes=n_eval_episodes,
|
|
tb_log_name=tb_log_name,
|
|
eval_log_path=eval_log_path,
|
|
reset_num_timesteps=reset_num_timesteps,
|
|
)
|
|
|
|
def _excluded_save_params(self) -> List[str]:
|
|
return super()._excluded_save_params() + ["actor", "critic", "critic_target"]
|
|
|
|
def _get_torch_save_params(self) -> Tuple[List[str], List[str]]:
|
|
state_dicts = ["policy", "actor.optimizer", "critic.optimizer"]
|
|
if self.ent_coef_optimizer is not None:
|
|
saved_pytorch_variables = ["log_ent_coef"]
|
|
state_dicts.append("ent_coef_optimizer")
|
|
else:
|
|
saved_pytorch_variables = ["ent_coef_tensor"]
|
|
return state_dicts, saved_pytorch_variables
|