75 lines
1.7 KiB
Python
75 lines
1.7 KiB
Python
import gym
|
|
from gym.envs.registration import register
|
|
import numpy as np
|
|
import time
|
|
|
|
from stable_baselines3 import SAC, PPO, A2C
|
|
from stable_baselines3.common.evaluation import evaluate_policy
|
|
|
|
from sb3_trl.trl_pg import TRL_PG
|
|
from subtrees.columbus import env
|
|
|
|
register(
|
|
id='ColumbusTest3.1-v0',
|
|
entry_point=env.ColumbusTest3_1,
|
|
max_episode_steps=1000,
|
|
)
|
|
|
|
def main():
|
|
#env = gym.make("LunarLander-v2")
|
|
env = gym.make("ColumbusTest3.1-v0")
|
|
|
|
ppo = PPO(
|
|
"MlpPolicy",
|
|
env,
|
|
verbose=0,
|
|
tensorboard_log="./logs_tb/test/",
|
|
)
|
|
a2c = A2C(
|
|
"MlpPolicy",
|
|
env,
|
|
verbose=0,
|
|
tensorboard_log="./logs_tb/test/",
|
|
)
|
|
trl = TRL_PG(
|
|
"MlpPolicy",
|
|
env,
|
|
verbose=0,
|
|
tensorboard_log="./logs_tb/test/",
|
|
)
|
|
|
|
print('PPO:')
|
|
testModel(ppo)
|
|
print('A2C:')
|
|
testModel(a2c)
|
|
print('TRL_PG:')
|
|
testModel(trl)
|
|
|
|
|
|
def testModel(model, timesteps=50000, showRes=False):
|
|
env = model.get_env()
|
|
model.learn(timesteps)
|
|
|
|
mean_reward, std_reward = evaluate_policy(model, env, n_eval_episodes=16, deterministic=False)
|
|
|
|
print('Reward: '+str(round(mean_reward,3))+'±'+str(round(std_reward,2)))
|
|
|
|
if showRes:
|
|
obs = env.reset()
|
|
# Evaluate the agent
|
|
episode_reward = 0
|
|
for _ in range(1000):
|
|
time.sleep(1/30)
|
|
action, _ = model.predict(obs, deterministic=False)
|
|
obs, reward, done, info = env.step(action)
|
|
env.render()
|
|
episode_reward += reward
|
|
if done:
|
|
#print("Reward:", episode_reward)
|
|
episode_reward = 0.0
|
|
obs = env.reset()
|
|
env.reset()
|
|
|
|
if __name__=='__main__':
|
|
main()
|