113 lines
3.7 KiB
Python
Executable File
113 lines
3.7 KiB
Python
Executable File
#!/usr/bin/python3
|
|
import gym
|
|
from gym.envs.registration import register
|
|
import numpy as np
|
|
import os
|
|
import time
|
|
import datetime
|
|
|
|
from stable_baselines3.common.evaluation import evaluate_policy
|
|
from stable_baselines3.common.policies import ActorCriticCnnPolicy, ActorCriticPolicy, MultiInputActorCriticPolicy
|
|
|
|
from metastable_baselines.ppo import PPO
|
|
# from metastable_baselines.sac import SAC
|
|
from metastable_baselines.ppo.policies import MlpPolicy
|
|
from metastable_baselines.projections import BaseProjectionLayer, FrobeniusProjectionLayer, WassersteinProjectionLayer, KLProjectionLayer
|
|
import columbus
|
|
|
|
from metastable_baselines.distributions import Strength, ParametrizationType, EnforcePositiveType, ProbSquashingType
|
|
|
|
root_path = '.'
|
|
|
|
|
|
def main(env_name='ColumbusCandyland_Aux10-v0', timesteps=2_000_000, showRes=True, saveModel=True, n_eval_episodes=0):
|
|
env = gym.make(env_name)
|
|
use_sde = False
|
|
ppo = PPO(
|
|
MlpPolicy,
|
|
env,
|
|
projection=FrobeniusProjectionLayer(),
|
|
policy_kwargs={'dist_kwargs': {'neural_strength': Strength.FULL, 'cov_strength': Strength.FULL, 'parameterization_type':
|
|
ParametrizationType.CHOL, 'enforce_positive_type': EnforcePositiveType.ABS, 'prob_squashing_type': ProbSquashingType.NONE}},
|
|
verbose=0,
|
|
tensorboard_log=root_path+"/logs_tb/" +
|
|
env_name+"/ppo"+(['', '_sde'][use_sde])+"/",
|
|
learning_rate=3e-4,
|
|
gamma=0.99,
|
|
gae_lambda=0.95,
|
|
normalize_advantage=True,
|
|
ent_coef=0.02, # 0.1
|
|
vf_coef=0.5,
|
|
use_sde=use_sde, # False
|
|
clip_range=0.2,
|
|
)
|
|
# trl_frob = PPO(
|
|
# MlpPolicy,
|
|
# env,
|
|
# projection=FrobeniusProjectionLayer(),
|
|
# verbose=0,
|
|
# tensorboard_log=root_path+"/logs_tb/"+env_name +
|
|
# "/trl_frob"+(['', '_sde'][use_sde])+"/",
|
|
# learning_rate=3e-4,
|
|
# gamma=0.99,
|
|
# gae_lambda=0.95,
|
|
# normalize_advantage=True,
|
|
# ent_coef=0.03, # 0.1
|
|
# vf_coef=0.5,
|
|
# use_sde=use_sde,
|
|
# clip_range=2, # 0.2
|
|
# )
|
|
|
|
print('PPO:')
|
|
testModel(ppo, timesteps, showRes,
|
|
saveModel, n_eval_episodes)
|
|
# print('TRL_frob:')
|
|
# testModel(trl_frob, timesteps, showRes,
|
|
# saveModel, n_eval_episodes)
|
|
|
|
|
|
def testModel(model, timesteps, showRes=False, saveModel=False, n_eval_episodes=16):
|
|
env = model.get_env()
|
|
try:
|
|
model.learn(timesteps)
|
|
except KeyboardInterrupt:
|
|
print('[!] Training Terminated')
|
|
pass
|
|
|
|
if saveModel:
|
|
now = datetime.datetime.now().strftime('%d.%m.%Y-%H:%M')
|
|
loc = root_path+'/models/' + \
|
|
model.tensorboard_log.replace(
|
|
root_path+'/logs_tb/', '').replace('/', '_')+now+'.zip'
|
|
model.save(loc)
|
|
|
|
if n_eval_episodes:
|
|
mean_reward, std_reward = evaluate_policy(
|
|
model, env, n_eval_episodes=n_eval_episodes, deterministic=False)
|
|
print('Reward: '+str(round(mean_reward, 3)) +
|
|
'±'+str(round(std_reward, 2)))
|
|
|
|
if showRes:
|
|
input('<ready?>')
|
|
obs = env.reset()
|
|
# Evaluate the agent
|
|
episode_reward = 0
|
|
while True:
|
|
time.sleep(1/30)
|
|
action, _ = model.predict(obs, deterministic=False)
|
|
obs, reward, done, info = env.step(action)
|
|
env.render()
|
|
episode_reward += reward
|
|
if done:
|
|
# print("Reward:", episode_reward)
|
|
episode_reward = 0.0
|
|
obs = env.reset()
|
|
env.reset()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
# main('LunarLanderContinuous-v2')
|
|
# main('ColumbusJustState-v0')
|
|
main('ColumbusStateWithBarriers-v0')
|
|
# main('ColumbusEasierObstacles-v0')
|