metastable-baselines/metastable_baselines/ppo/ppo.py

440 lines
20 KiB
Python

import warnings
from typing import Any, Dict, Optional, Type, Union, NamedTuple
import numpy as np
import torch as th
from gym import spaces
from torch.nn import functional as F
from stable_baselines3.common.on_policy_algorithm import OnPolicyAlgorithm
from stable_baselines3.common.policies import ActorCriticCnnPolicy, ActorCriticPolicy, BasePolicy, MultiInputActorCriticPolicy
from stable_baselines3.common.type_aliases import GymEnv, MaybeCallback, Schedule
from stable_baselines3.common.utils import explained_variance, get_schedule_fn
from stable_baselines3.common.vec_env import VecEnv
from stable_baselines3.common.buffers import RolloutBuffer
from stable_baselines3.common.callbacks import BaseCallback
from stable_baselines3.common.utils import obs_as_tensor
from stable_baselines3.common.vec_env import VecNormalize
from ..misc.distTools import new_dist_like, new_dist_like_from_sqrt
from metastable_projections.projections.base_projection_layer import BaseProjectionLayer
from metastable_projections.projections.frob_projection_layer import FrobeniusProjectionLayer
from metastable_projections.projections.w2_projection_layer import WassersteinProjectionLayer
from metastable_projections.projections.kl_projection_layer import KLProjectionLayer
from ..misc.rollout_buffer import GaussianRolloutCollectorAuxclass
from copy import deepcopy
class PPO(GaussianRolloutCollectorAuxclass, OnPolicyAlgorithm):
"""
Differential Trust Region Layer (TRL) for Policy Gradient (PG)
Paper: https://arxiv.org/abs/2101.09207
Code: This implementation borrows (/steals most) code from SB3's PPO implementation https://github.com/DLR-RM/stable-baselines3/blob/master/stable_baselines3/ppo/ppo.py
The implementation of the TRL-specific parts borrows from https://github.com/boschresearch/trust-region-layers/blob/main/trust_region_projections/algorithms/pg/pg.py (Stolen from Fabian's Code (Public Version))
:param policy: The policy model to use (MlpPolicy, CnnPolicy, ...)
:param env: The environment to learn from (if registered in Gym, can be str)
:param learning_rate: The learning rate, it can be a function
of the current progress remaining (from 1 to 0)
:param n_steps: The number of steps to run for each environment per update
(i.e. rollout buffer size is n_steps * n_envs where n_envs is number of environment copies running in parallel)
NOTE: n_steps * n_envs must be greater than 1 (because of the advantage normalization)
See https://github.com/pytorch/pytorch/issues/29372
:param batch_size: Minibatch size
:param n_epochs: Number of epoch when optimizing the surrogate loss
:param gamma: Discount factor
:param gae_lambda: Factor for trade-off of bias vs variance for Generalized Advantage Estimator
:param clip_range: Clipping parameter, it can be a function of the current progress
remaining (from 1 to 0).
:param clip_range_vf: Clipping parameter for the value function,
it can be a function of the current progress remaining (from 1 to 0).
This is a parameter specific to the OpenAI implementation. If None is passed (default),
no clipping will be done on the value function.
IMPORTANT: this clipping depends on the reward scaling.
:param normalize_advantage: Whether to normalize or not the advantage
:param ent_coef: Entropy coefficient for the loss calculation
:param vf_coef: Value function coefficient for the loss calculation
:param max_grad_norm: The maximum value for the gradient clipping
:param use_sde: Whether to use generalized State Dependent Exploration (gSDE)
instead of action noise exploration (default: False)
:param sde_sample_freq: Sample a new noise matrix every n steps when using gSDE
Default: -1 (only sample at the beginning of the rollout)
:param target_kl: Limit the KL divergence between updates,
because the clipping is not enough to prevent large update
# 213 (cf https://github.com/hill-a/stable-baselines/issues/213)
see issue
By default, there is no limit on the kl div.
:param tensorboard_log: the log location for tensorboard (if None, no logging)
:param create_eval_env: Whether to create a second environment that will be
used for evaluating the agent periodically. (Only available when passing string for the environment)
:param policy_kwargs: additional arguments to be passed to the policy on creation
:param verbose: the verbosity level: 0 no output, 1 info, 2 debug
:param seed: Seed for the pseudo random generators
:param device: Device (cpu, cuda, ...) on which the code should be run.
Setting it to auto, the code will be run on the GPU if possible.
:param projection: What kind of Projection to use
:param _init_setup_model: Whether or not to build the network at the creation of the instance
"""
policy_aliases: Dict[str, Type[BasePolicy]] = {
"MlpPolicy": ActorCriticPolicy,
"CnnPolicy": ActorCriticCnnPolicy,
"MultiInputPolicy": MultiInputActorCriticPolicy,
}
def __init__(
self,
policy: Union[str, Type[ActorCriticPolicy]],
env: Union[GymEnv, str],
learning_rate: Union[float, Schedule] = 3e-4,
n_steps: int = 2048,
batch_size: int = 64,
n_epochs: int = 10,
gamma: float = 0.99,
gae_lambda: float = 0.95,
clip_range: Union[None, float, Schedule] = 0.2,
clip_range_vf: Union[None, float, Schedule] = None,
normalize_advantage: bool = True,
ent_coef: float = 0.0,
vf_coef: float = 0.5,
action_coef: float = 0.0,
max_grad_norm: Union[None, float] = 0.5,
use_sde: bool = False,
sde_sample_freq: int = -1,
target_kl: Optional[float] = None,
tensorboard_log: Optional[str] = None,
policy_kwargs: Optional[Dict[str, Any]] = {},
verbose: int = 0,
seed: Optional[int] = None,
device: Union[th.device, str] = "auto",
# Different from PPO:
#projection: BaseProjectionLayer = KLProjectionLayer(),
#projection: BaseProjectionLayer = WassersteinProjectionLayer(),
#projection: BaseProjectionLayer = FrobeniusProjectionLayer(),
projection: BaseProjectionLayer = BaseProjectionLayer(),
_init_setup_model: bool = True,
):
super().__init__(
policy,
env,
learning_rate=learning_rate,
n_steps=n_steps,
gamma=gamma,
gae_lambda=gae_lambda,
ent_coef=ent_coef,
vf_coef=vf_coef,
max_grad_norm=max_grad_norm,
use_sde=use_sde,
sde_sample_freq=sde_sample_freq,
tensorboard_log=tensorboard_log,
policy_kwargs=policy_kwargs |
{'sqrt_induced_gaussian': isinstance(
projection, WassersteinProjectionLayer)},
verbose=verbose,
device=device,
seed=seed,
_init_setup_model=False,
supported_action_spaces=(
spaces.Box,
# spaces.Discrete,
# spaces.MultiDiscrete,
# spaces.MultiBinary,
),
)
# Sanity check, otherwise it will lead to noisy gradient and NaN
# because of the advantage normalization
if normalize_advantage:
assert (
batch_size > 1
), "`batch_size` must be greater than 1. See https://github.com/DLR-RM/stable-baselines3/issues/440"
if self.env is not None:
# Check that `n_steps * n_envs > 1` to avoid NaN
# when doing advantage normalization
buffer_size = self.env.num_envs * self.n_steps
assert (
buffer_size > 1
), f"`n_steps * n_envs` must be greater than 1. Currently n_steps={self.n_steps} and n_envs={self.env.num_envs}"
# Check that the rollout buffer size is a multiple of the mini-batch size
untruncated_batches = buffer_size // batch_size
if buffer_size % batch_size > 0:
warnings.warn(
f"You have specified a mini-batch size of {batch_size},"
f" but because the `RolloutBuffer` is of size `n_steps * n_envs = {buffer_size}`,"
f" after every {untruncated_batches} untruncated mini-batches,"
f" there will be a truncated mini-batch of size {buffer_size % batch_size}\n"
f"We recommend using a `batch_size` that is a factor of `n_steps * n_envs`.\n"
f"Info: (n_steps={self.n_steps} and n_envs={self.env.num_envs})"
)
self.batch_size = batch_size
self.n_epochs = n_epochs
self.clip_range = clip_range
self.clip_range_vf = clip_range_vf
self.normalize_advantage = normalize_advantage
self.target_kl = target_kl
self.action_coef = action_coef
# Different from PPO:
self.projection = projection
self._global_steps = 0
if _init_setup_model:
self._setup_model()
def _setup_model(self) -> None:
super()._setup_model()
# Initialize schedules for policy/value clipping
if self.clip_range is not None:
self.clip_range = get_schedule_fn(self.clip_range)
if self.clip_range_vf is not None:
if isinstance(self.clip_range_vf, (float, int)):
assert self.clip_range_vf > 0, "`clip_range_vf` must be positive, " "pass `None` to deactivate vf clipping"
self.clip_range_vf = get_schedule_fn(self.clip_range_vf)
def train(self) -> None:
"""
Update policy using the currently gathered rollout buffer.
"""
# Switch to train mode (this affects batch norm / dropout)
self.policy.set_training_mode(True)
# Update optimizer learning rate
self._update_learning_rate(self.policy.optimizer)
# Compute current clip range
if self.clip_range:
clip_range = self.clip_range(self._current_progress_remaining)
else:
clip_range = None
# Optional: clip range for the value function
if self.clip_range_vf is not None:
clip_range_vf = self.clip_range_vf(
self._current_progress_remaining)
surrogate_losses = []
entropy_losses = []
trust_region_losses = []
action_losses = []
pg_losses, value_losses = [], []
clip_fractions = []
setbackCtr = 0
bak = deepcopy(self.policy.state_dict())
continue_training = True
# train for n_epochs epochs
for epoch in range(self.n_epochs):
# self.policy.load_state_dict(
approx_kl_divs = []
# Do a complete pass on the rollout buffer
for rollout_data in self.rollout_buffer.get(self.batch_size):
# This is new compared to PPO.
# Calculating the TR-Projections we need to know the step number
self._global_steps += 1
actions = rollout_data.actions
if isinstance(self.action_space, spaces.Discrete):
# Convert discrete action from float to long
actions = rollout_data.actions.long().flatten()
# Re-sample the noise matrix because the log_std has changed
if self.use_sde:
self.policy.reset_noise(self.batch_size)
# Different from PPO
# TRL-Projection-Action:
pol = self.policy
features = pol.extract_features(rollout_data.observations)
latent_pi, latent_vf = pol.mlp_extractor(features)
try:
p = pol._get_action_dist_from_latent(latent_pi)
except ValueError:
self.policy.load_state_dict(bak)
setbackCtr += 1
print(
'[!] Gradients Exploded; reseting to last known states (setback number '+str(setbackCtr)+')')
break
del bak
bak = deepcopy(self.policy.state_dict())
p_dist = p.distribution
if isinstance(self.projection, WassersteinProjectionLayer):
q_dist = new_dist_like_from_sqrt(
p_dist, rollout_data.means, rollout_data.chols)
else:
q_dist = new_dist_like(
p_dist, rollout_data.means, rollout_data.chols)
proj_p = self.projection(p_dist, q_dist, self._global_steps)
if isinstance(p_dist, th.distributions.Normal):
# Normal uses a weird mapping from dimensions into batch_shape
log_prob = proj_p.log_prob(actions).sum(dim=1)
else:
# UniversalGaussianDistribution instead uses Independent (or MultivariateNormal), which has a more rational dim mapping
log_prob = proj_p.log_prob(actions)
values = self.policy.value_net(latent_vf)
entropy = proj_p.entropy()
values = values.flatten()
# Normalize advantage
advantages = rollout_data.advantages
if self.normalize_advantage:
advantages = (advantages - advantages.mean()
) / (advantages.std() + 1e-8)
# ratio between old and new policy, should be one at the first iteration
ratio = th.exp(log_prob - rollout_data.old_log_prob)
# Difference from PPO: We renamed 'policy_loss' to 'surrogate_loss'
# clipped surrogate loss
if self.clip_range is None:
surrogate_loss = -(advantages * ratio).mean()
else:
surrogate_loss_1 = advantages * ratio
surrogate_loss_2 = advantages * \
th.clamp(ratio, 1 - clip_range, 1 + clip_range)
surrogate_loss = - \
th.min(surrogate_loss_1, surrogate_loss_2).mean()
surrogate_losses.append(surrogate_loss.item())
if clip_range is None:
clip_fraction = 0
else:
clip_fraction = th.mean(
(th.abs(ratio - 1) > clip_range).float()).item()
clip_fractions.append(clip_fraction)
if self.clip_range_vf is None:
# No clipping
values_pred = values
else:
# Clip the different between old and new value
# NOTE: this depends on the reward scaling
values_pred = rollout_data.old_values + th.clamp(
values - rollout_data.old_values, -clip_range_vf, clip_range_vf
)
# Value loss using the TD(gae_lambda) target
value_loss = F.mse_loss(rollout_data.returns, values_pred)
value_losses.append(value_loss.item())
# Entropy loss favor exploration
if entropy is None:
# Approximate entropy when no analytical form
entropy_loss = -th.mean(-log_prob)
else:
entropy_loss = -th.mean(entropy)
entropy_losses.append(entropy_loss.item())
# Difference to PPO: Added trust_region_loss; policy_loss includes entropy_loss + trust_region_loss
trust_region_loss = self.projection.get_trust_region_loss(
p, proj_p)
trust_region_losses.append(trust_region_loss.item())
# 'Principle of least action'
action_loss = th.mean(th.square(actions))
action_losses.append(action_loss.item())
policy_loss = surrogate_loss + self.ent_coef * entropy_loss + \
trust_region_loss + self.action_coef * action_loss
pg_losses.append(policy_loss.item())
loss = policy_loss + self.vf_coef * value_loss
# Calculate approximate form of reverse KL Divergence for early stopping
# see issue #417: https://github.com/DLR-RM/stable-baselines3/issues/417
# and discussion in PR #419: https://github.com/DLR-RM/stable-baselines3/pull/419
# and Schulman blog: http://joschu.net/blog/kl-approx.html
with th.no_grad():
log_ratio = log_prob - rollout_data.old_log_prob
approx_kl_div = th.mean(
(th.exp(log_ratio) - 1) - log_ratio).cpu().numpy()
approx_kl_divs.append(approx_kl_div)
if self.target_kl is not None and approx_kl_div > 1.5 * self.target_kl:
continue_training = False
if self.verbose >= 1:
print(
f"Early stopping at step {epoch} due to reaching max kl: {approx_kl_div:.2f}")
break
# Optimization step
self.policy.optimizer.zero_grad()
loss.backward()
# Clip grad norm
if self.max_grad_norm is not None:
th.nn.utils.clip_grad_norm_(
self.policy.parameters(), self.max_grad_norm)
self.policy.optimizer.step()
if not continue_training:
break
self._n_updates += self.n_epochs
explained_var = explained_variance(
self.rollout_buffer.values.flatten(), self.rollout_buffer.returns.flatten())
# Logs
self.logger.record("train/surrogate_loss", np.mean(surrogate_losses))
self.logger.record("train/entropy_loss", np.mean(entropy_losses))
self.logger.record("train/trust_region_loss",
np.mean(trust_region_losses))
self.logger.record("train/policy_gradient_loss", np.mean(pg_losses))
self.logger.record("train/action_loss", np.mean(action_losses))
self.logger.record("train/value_loss", np.mean(value_losses))
self.logger.record("train/approx_kl", np.mean(approx_kl_divs))
self.logger.record("train/clip_fraction", np.mean(clip_fractions))
self.logger.record("train/loss", loss.item())
self.logger.record("train/explained_variance", explained_var)
if hasattr(self.policy, "log_std"):
self.logger.record(
"train/std", th.exp(self.policy.log_std).mean().item())
elif hasattr(self.policy, "chol"):
chol = self.policy.chol
if len(chol.shape) == 1:
self.logger.record(
"train/std", th.mean(chol).mean().item())
elif len(chol.shape) == 2:
self.logger.record(
"train/std", th.mean(th.sqrt(th.diagonal(chol.T @ chol, dim1=-2, dim2=-1))).mean().item())
else:
self.logger.record(
"train/std", th.mean(th.sqrt(th.diagonal(chol.mT @ chol, dim1=-2, dim2=-1))).mean().item())
self.logger.record("train/n_updates",
self._n_updates, exclude="tensorboard")
if self.clip_range is not None:
self.logger.record("train/clip_range", clip_range)
if self.clip_range_vf is not None:
self.logger.record("train/clip_range_vf", clip_range_vf)
def learn(
self,
total_timesteps: int,
callback: MaybeCallback = None,
log_interval: int = 1,
tb_log_name: str = "PPO",
reset_num_timesteps: bool = True,
) -> "PPO":
return super().learn(
total_timesteps=total_timesteps,
callback=callback,
log_interval=log_interval,
tb_log_name=tb_log_name,
reset_num_timesteps=reset_num_timesteps,
)