59 lines
1.7 KiB
Python
Executable File
59 lines
1.7 KiB
Python
Executable File
#!/usr/bin/python3.10
|
|
import gym
|
|
from gym.envs.registration import register
|
|
import numpy as np
|
|
import os
|
|
import time
|
|
import datetime
|
|
|
|
from stable_baselines3.common.evaluation import evaluate_policy
|
|
from stable_baselines3.common.policies import ActorCriticCnnPolicy, ActorCriticPolicy, MultiInputActorCriticPolicy
|
|
|
|
from metastable_baselines.ppo import PPO
|
|
import columbus
|
|
|
|
|
|
def main(load_path, n_eval_episodes=0):
|
|
load_path = load_path.replace('.zip', '')
|
|
load_path = load_path.replace("'", '')
|
|
load_path = load_path.replace(' ', '')
|
|
file_name = load_path.split('/')[-1]
|
|
# TODO: Ugly, Ugly, Ugly:
|
|
env_name = file_name.split('_')[0]
|
|
alg_name = file_name.split('_')[1]
|
|
alg_deriv = file_name.split('_')[2]
|
|
use_sde = file_name.find('sde') != -1
|
|
print(env_name, alg_name, alg_deriv, use_sde)
|
|
env = gym.make(env_name)
|
|
|
|
model = PPO.load(load_path, env=env)
|
|
|
|
show_chol = env_name.startswith('Columbus')
|
|
|
|
if n_eval_episodes:
|
|
mean_reward, std_reward = evaluate_policy(
|
|
model, env, n_eval_episodes=n_eval_episodes, deterministic=False)
|
|
print('Reward: '+str(round(mean_reward, 3)) +
|
|
'±'+str(round(std_reward, 2)))
|
|
|
|
input('<ready?>')
|
|
obs = env.reset()
|
|
episode_reward = 0
|
|
while True:
|
|
time.sleep(1/30)
|
|
action, _ = model.predict(obs, deterministic=False)
|
|
obs, reward, done, info = env.step(action)
|
|
if show_chol:
|
|
env.render(chol=model.policy.chol)
|
|
else:
|
|
env.render()
|
|
episode_reward += reward
|
|
if done:
|
|
episode_reward = 0.0
|
|
obs = env.reset()
|
|
env.reset()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main(input('[path to model> '))
|