572 lines
23 KiB
Python
572 lines
23 KiB
Python
import warnings
|
|
from typing import Any, Dict, List, Optional, Tuple, Type, Union
|
|
|
|
import math
|
|
|
|
import gym
|
|
import torch as th
|
|
from torch import nn
|
|
|
|
from stable_baselines3.common.distributions import SquashedDiagGaussianDistribution, StateDependentNoiseDistribution
|
|
from stable_baselines3.common.policies import BasePolicy, ContinuousCritic
|
|
from stable_baselines3.common.preprocessing import get_action_dim
|
|
from stable_baselines3.common.torch_layers import (
|
|
BaseFeaturesExtractor,
|
|
CombinedExtractor,
|
|
FlattenExtractor,
|
|
NatureCNN,
|
|
create_mlp,
|
|
get_actor_critic_arch,
|
|
)
|
|
from stable_baselines3.common.type_aliases import Schedule
|
|
|
|
from ..distributions import UniversalGaussianDistribution
|
|
|
|
# CAP the standard deviation of the actor
|
|
CHOL_MIN = 0.001
|
|
CHOL_MAX = 1000
|
|
|
|
|
|
class Actor(BasePolicy):
|
|
"""
|
|
Actor network (policy) for SAC.
|
|
|
|
:param observation_space: Obervation space
|
|
:param action_space: Action space
|
|
:param net_arch: Network architecture
|
|
:param features_extractor: Network to extract features
|
|
(a CNN when using images, a nn.Flatten() layer otherwise)
|
|
:param features_dim: Number of features
|
|
:param activation_fn: Activation function
|
|
:param use_sde: Whether to use State Dependent Exploration or not
|
|
:param log_std_init: Initial value for the log standard deviation
|
|
:param full_std: Whether to use (n_features x n_actions) parameters
|
|
for the std instead of only (n_features,) when using gSDE.
|
|
:param sde_net_arch: Network architecture for extracting features
|
|
when using gSDE. If None, the latent features from the policy will be used.
|
|
Pass an empty list to use the states as features.
|
|
:param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure
|
|
a positive standard deviation (cf paper). It allows to keep variance
|
|
above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.
|
|
:param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.
|
|
:param normalize_images: Whether to normalize images or not,
|
|
dividing by 255.0 (True by default)
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
observation_space: gym.spaces.Space,
|
|
action_space: gym.spaces.Space,
|
|
net_arch: List[int],
|
|
features_extractor: nn.Module,
|
|
features_dim: int,
|
|
activation_fn: Type[nn.Module] = nn.ReLU,
|
|
use_sde: bool = False,
|
|
log_std_init: float = -3,
|
|
full_std: bool = True,
|
|
sde_net_arch: Optional[List[int]] = None,
|
|
use_expln: bool = False,
|
|
clip_mean: float = 2.0,
|
|
normalize_images: bool = True,
|
|
dist_kwargs={},
|
|
latent_dim_sde=None,
|
|
):
|
|
super().__init__(
|
|
observation_space,
|
|
action_space,
|
|
features_extractor=features_extractor,
|
|
normalize_images=normalize_images,
|
|
squash_output=True,
|
|
)
|
|
|
|
# Save arguments to re-create object at loading
|
|
self.use_sde = use_sde
|
|
self.sde_features_extractor = None
|
|
self.net_arch = net_arch
|
|
self.features_dim = features_dim
|
|
self.activation_fn = activation_fn
|
|
self.log_std_init = log_std_init
|
|
self.sde_net_arch = sde_net_arch
|
|
self.use_expln = use_expln
|
|
self.full_std = full_std
|
|
self.clip_mean = clip_mean
|
|
|
|
self.latent_dim_sde = latent_dim_sde
|
|
|
|
if sde_net_arch is not None:
|
|
warnings.warn(
|
|
"sde_net_arch is deprecated and will be removed in SB3 v2.4.0.", DeprecationWarning)
|
|
|
|
action_dim = get_action_dim(self.action_space)
|
|
latent_pi_net = create_mlp(features_dim, -1, net_arch, activation_fn)
|
|
self.latent_pi = nn.Sequential(*latent_pi_net)
|
|
last_layer_dim = net_arch[-1] if len(net_arch) > 0 else features_dim
|
|
|
|
if self.use_sde:
|
|
add_dist_kwargs = {
|
|
'use_sde': True,
|
|
# "use_expln": use_expln,
|
|
# "learn_features": False,
|
|
}
|
|
for k in add_dist_kwargs:
|
|
dist_kwargs[k] = add_dist_kwargs[k]
|
|
|
|
self.action_dist = UniversalGaussianDistribution(
|
|
action_dim, **dist_kwargs)
|
|
self.mu_net, self.chol_net = self.action_dist.proba_distribution_net(
|
|
latent_dim=last_layer_dim, latent_sde_dim=self.latent_dim_sde or last_layer_dim, std_init=math.exp(
|
|
self.log_std_init)
|
|
)
|
|
# self.action_dist = StateDependentNoiseDistribution(
|
|
# action_dim, full_std=full_std, use_expln=use_expln, learn_features=True, squash_output=True
|
|
# )
|
|
# self.mu_net, self.chol_net = self.action_dist.proba_distribution_net(
|
|
# latent_dim=last_layer_dim, latent_sde_dim=last_layer_dim, log_std_init=log_std_init
|
|
# )
|
|
# Avoid numerical issues by limiting the mean of the Gaussian
|
|
# to be in [-clip_mean, clip_mean]
|
|
# if clip_mean > 0.0:
|
|
# self.mu = nn.Sequential(self.mu, nn.Hardtanh(
|
|
# min_val=-clip_mean, max_val=clip_mean))
|
|
else:
|
|
self.action_dist = UniversalGaussianDistribution(
|
|
action_dim, **dist_kwargs)
|
|
self.mu_net, self.chol_net = self.action_dist.proba_distribution_net(
|
|
latent_dim=last_layer_dim, latent_sde_dim=last_layer_dim, std_init=math.exp(
|
|
self.log_std_init)
|
|
)
|
|
|
|
# self.action_dist = SquashedDiagGaussianDistribution(action_dim)
|
|
# self.mu = nn.Linear(last_layer_dim, action_dim)
|
|
# self.log_std = nn.Linear(last_layer_dim, action_dim)
|
|
|
|
def _get_constructor_parameters(self) -> Dict[str, Any]:
|
|
data = super()._get_constructor_parameters()
|
|
|
|
data.update(
|
|
dict(
|
|
net_arch=self.net_arch,
|
|
features_dim=self.features_dim,
|
|
activation_fn=self.activation_fn,
|
|
use_sde=self.use_sde,
|
|
log_std_init=self.log_std_init,
|
|
full_std=self.full_std,
|
|
use_expln=self.use_expln,
|
|
features_extractor=self.features_extractor,
|
|
clip_mean=self.clip_mean,
|
|
)
|
|
)
|
|
return data
|
|
|
|
def get_std(self) -> th.Tensor:
|
|
"""
|
|
Retrieve the standard deviation of the action distribution.
|
|
Only useful when using gSDE.
|
|
It corresponds to ``th.exp(log_std)`` in the normal case,
|
|
but is slightly different when using ``expln`` function
|
|
(cf StateDependentNoiseDistribution doc).
|
|
|
|
:return:
|
|
"""
|
|
msg = "get_std() is only available when using gSDE"
|
|
assert isinstance(self.action_dist,
|
|
StateDependentNoiseDistribution) or (isinstance(self.action_dist, UniversalGaussianDistribution) and self.action_dist.use_sde), msg
|
|
return self.chol
|
|
|
|
def reset_noise(self, n_envs: int = 1) -> None:
|
|
"""
|
|
Sample new weights for the exploration matrix.
|
|
|
|
:param n_envs:
|
|
"""
|
|
assert isinstance(
|
|
self.action_dist, StateDependentNoiseDistribution) or isinstance(
|
|
self.action_dist, UniversalGaussianDistribution), "reset_noise() is only available when using gSDE"
|
|
if isinstance(
|
|
self.action_dist, StateDependentNoiseDistribution):
|
|
self.action_dist.sample_weights(self.chol, batch_size=n_envs)
|
|
|
|
if isinstance(
|
|
self.action_dist, UniversalGaussianDistribution):
|
|
self.action_dist.sample_weights(batch_size=n_envs)
|
|
|
|
def get_action_dist_params(self, obs: th.Tensor) -> Tuple[th.Tensor, th.Tensor, Dict[str, th.Tensor]]:
|
|
"""
|
|
Get the parameters for the action distribution.
|
|
|
|
:param obs:
|
|
:return:
|
|
Mean, standard deviation and optional keyword arguments.
|
|
"""
|
|
features = self.extract_features(obs)
|
|
latent_pi = self.latent_pi(features)
|
|
mean_actions = self.mu_net(latent_pi)
|
|
|
|
# Unstructured exploration (Original implementation)
|
|
chol = self.chol_net(latent_pi)
|
|
self.chol = chol
|
|
# Original Implementation to cap the standard deviation
|
|
self.chol = th.clamp(chol, CHOL_MIN, CHOL_MAX)
|
|
if self.use_sde:
|
|
return mean_actions, self.chol, dict(latent_sde=latent_pi)
|
|
return mean_actions, self.chol, {}
|
|
|
|
def forward(self, obs: th.Tensor, deterministic: bool = False) -> th.Tensor:
|
|
mean_actions, chol, kwargs = self.get_action_dist_params(obs)
|
|
# Note: the action is squashed
|
|
return self.action_dist.actions_from_params(mean_actions, chol, deterministic=deterministic, **kwargs)
|
|
|
|
def action_log_prob(self, obs: th.Tensor) -> Tuple[th.Tensor, th.Tensor]:
|
|
mean_actions, chol, kwargs = self.get_action_dist_params(obs)
|
|
# return action and associated log prob
|
|
return self.action_dist.log_prob_from_params(mean_actions, chol, **kwargs)
|
|
|
|
def _predict(self, observation: th.Tensor, deterministic: bool = False) -> th.Tensor:
|
|
return self(observation, deterministic)
|
|
|
|
|
|
class SACPolicy(BasePolicy):
|
|
"""
|
|
Policy class (with both actor and critic) for SAC.
|
|
|
|
:param observation_space: Observation space
|
|
:param action_space: Action space
|
|
:param lr_schedule: Learning rate schedule (could be constant)
|
|
:param net_arch: The specification of the policy and value networks.
|
|
:param activation_fn: Activation function
|
|
:param use_sde: Whether to use State Dependent Exploration or not
|
|
:param log_std_init: Initial value for the log standard deviation
|
|
:param sde_net_arch: Network architecture for extracting features
|
|
when using gSDE. If None, the latent features from the policy will be used.
|
|
Pass an empty list to use the states as features.
|
|
:param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure
|
|
a positive standard deviation (cf paper). It allows to keep variance
|
|
above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.
|
|
:param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.
|
|
:param features_extractor_class: Features extractor to use.
|
|
:param features_extractor_kwargs: Keyword arguments
|
|
to pass to the features extractor.
|
|
:param normalize_images: Whether to normalize images or not,
|
|
dividing by 255.0 (True by default)
|
|
:param optimizer_class: The optimizer to use,
|
|
``th.optim.Adam`` by default
|
|
:param optimizer_kwargs: Additional keyword arguments,
|
|
excluding the learning rate, to pass to the optimizer
|
|
:param n_critics: Number of critic networks to create.
|
|
:param share_features_extractor: Whether to share or not the features extractor
|
|
between the actor and the critic (this saves computation time)
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
observation_space: gym.spaces.Space,
|
|
action_space: gym.spaces.Space,
|
|
lr_schedule: Schedule,
|
|
net_arch: Optional[Union[List[int], Dict[str, List[int]]]] = None,
|
|
activation_fn: Type[nn.Module] = nn.ReLU,
|
|
use_sde: bool = False,
|
|
log_std_init: float = -3,
|
|
sde_net_arch: Optional[List[int]] = None,
|
|
use_expln: bool = False,
|
|
clip_mean: float = 2.0,
|
|
features_extractor_class: Type[BaseFeaturesExtractor] = FlattenExtractor,
|
|
features_extractor_kwargs: Optional[Dict[str, Any]] = None,
|
|
normalize_images: bool = True,
|
|
optimizer_class: Type[th.optim.Optimizer] = th.optim.Adam,
|
|
optimizer_kwargs: Optional[Dict[str, Any]] = None,
|
|
n_critics: int = 2,
|
|
share_features_extractor: bool = True,
|
|
dist_kwargs={},
|
|
latent_dim_sde=None,
|
|
):
|
|
super().__init__(
|
|
observation_space,
|
|
action_space,
|
|
features_extractor_class,
|
|
features_extractor_kwargs,
|
|
optimizer_class=optimizer_class,
|
|
optimizer_kwargs=optimizer_kwargs,
|
|
squash_output=True,
|
|
)
|
|
|
|
if net_arch is None:
|
|
if features_extractor_class == NatureCNN:
|
|
net_arch = []
|
|
else:
|
|
net_arch = [256, 256]
|
|
|
|
actor_arch, critic_arch = get_actor_critic_arch(net_arch)
|
|
|
|
self.net_arch = net_arch
|
|
self.activation_fn = activation_fn
|
|
self.net_args = {
|
|
"observation_space": self.observation_space,
|
|
"action_space": self.action_space,
|
|
"net_arch": actor_arch,
|
|
"activation_fn": self.activation_fn,
|
|
"normalize_images": normalize_images,
|
|
}
|
|
self.actor_kwargs = self.net_args.copy()
|
|
|
|
if sde_net_arch is not None:
|
|
warnings.warn(
|
|
"sde_net_arch is deprecated and will be removed in SB3 v2.4.0.", DeprecationWarning)
|
|
|
|
sde_kwargs = {
|
|
"use_sde": use_sde,
|
|
"log_std_init": log_std_init,
|
|
"use_expln": use_expln,
|
|
"clip_mean": clip_mean,
|
|
}
|
|
|
|
self.actor_kwargs.update(sde_kwargs)
|
|
self.actor.kwargs.update({'latent_dim_sde': latent_dim_sde})
|
|
self.critic_kwargs = self.net_args.copy()
|
|
self.critic_kwargs.update(
|
|
{
|
|
"n_critics": n_critics,
|
|
"net_arch": critic_arch,
|
|
"share_features_extractor": share_features_extractor,
|
|
}
|
|
)
|
|
|
|
self.actor, self.actor_target = None, None
|
|
self.critic, self.critic_target = None, None
|
|
self.share_features_extractor = share_features_extractor
|
|
|
|
self.dist_kwargs = dist_kwargs
|
|
|
|
self._build(lr_schedule)
|
|
|
|
def _build(self, lr_schedule: Schedule) -> None:
|
|
self.actor = self.make_actor()
|
|
self.actor.optimizer = self.optimizer_class(
|
|
self.actor.parameters(), lr=lr_schedule(1), **self.optimizer_kwargs)
|
|
|
|
if self.share_features_extractor:
|
|
self.critic = self.make_critic(
|
|
features_extractor=self.actor.features_extractor)
|
|
# Do not optimize the shared features extractor with the critic loss
|
|
# otherwise, there are gradient computation issues
|
|
critic_parameters = [param for name, param in self.critic.named_parameters(
|
|
) if "features_extractor" not in name]
|
|
else:
|
|
# Create a separate features extractor for the critic
|
|
# this requires more memory and computation
|
|
self.critic = self.make_critic(features_extractor=None)
|
|
critic_parameters = self.critic.parameters()
|
|
|
|
# Critic target should not share the features extractor with critic
|
|
self.critic_target = self.make_critic(features_extractor=None)
|
|
self.critic_target.load_state_dict(self.critic.state_dict())
|
|
|
|
self.critic.optimizer = self.optimizer_class(
|
|
critic_parameters, lr=lr_schedule(1), **self.optimizer_kwargs)
|
|
|
|
# Target networks should always be in eval mode
|
|
self.critic_target.set_training_mode(False)
|
|
|
|
def _get_constructor_parameters(self) -> Dict[str, Any]:
|
|
data = super()._get_constructor_parameters()
|
|
|
|
data.update(
|
|
dict(
|
|
net_arch=self.net_arch,
|
|
activation_fn=self.net_args["activation_fn"],
|
|
use_sde=self.actor_kwargs["use_sde"],
|
|
log_std_init=self.actor_kwargs["log_std_init"],
|
|
use_expln=self.actor_kwargs["use_expln"],
|
|
clip_mean=self.actor_kwargs["clip_mean"],
|
|
n_critics=self.critic_kwargs["n_critics"],
|
|
# dummy lr schedule, not needed for loading policy alone
|
|
lr_schedule=self._dummy_schedule,
|
|
optimizer_class=self.optimizer_class,
|
|
optimizer_kwargs=self.optimizer_kwargs,
|
|
features_extractor_class=self.features_extractor_class,
|
|
features_extractor_kwargs=self.features_extractor_kwargs,
|
|
)
|
|
)
|
|
return data
|
|
|
|
def reset_noise(self, batch_size: int = 1) -> None:
|
|
"""
|
|
Sample new weights for the exploration matrix, when using gSDE.
|
|
|
|
:param batch_size:
|
|
"""
|
|
# self.actor.reset_noise(batch_size=batch_size)
|
|
self.actor.reset_noise()
|
|
|
|
def make_actor(self, features_extractor: Optional[BaseFeaturesExtractor] = None) -> Actor:
|
|
actor_kwargs = self._update_features_extractor(
|
|
self.actor_kwargs, features_extractor)
|
|
return Actor(**actor_kwargs, dist_kwargs=self.dist_kwargs).to(self.device)
|
|
|
|
def make_critic(self, features_extractor: Optional[BaseFeaturesExtractor] = None) -> ContinuousCritic:
|
|
critic_kwargs = self._update_features_extractor(
|
|
self.critic_kwargs, features_extractor)
|
|
return ContinuousCritic(**critic_kwargs).to(self.device)
|
|
|
|
def forward(self, obs: th.Tensor, deterministic: bool = False) -> th.Tensor:
|
|
return self._predict(obs, deterministic=deterministic)
|
|
|
|
def _predict(self, observation: th.Tensor, deterministic: bool = False) -> th.Tensor:
|
|
return self.actor(observation, deterministic)
|
|
|
|
def set_training_mode(self, mode: bool) -> None:
|
|
"""
|
|
Put the policy in either training or evaluation mode.
|
|
|
|
This affects certain modules, such as batch normalisation and dropout.
|
|
|
|
:param mode: if true, set to training mode, else set to evaluation mode
|
|
"""
|
|
self.actor.set_training_mode(mode)
|
|
self.critic.set_training_mode(mode)
|
|
self.training = mode
|
|
|
|
|
|
MlpPolicy = SACPolicy
|
|
|
|
|
|
class CnnPolicy(SACPolicy):
|
|
"""
|
|
Policy class (with both actor and critic) for SAC.
|
|
|
|
:param observation_space: Observation space
|
|
:param action_space: Action space
|
|
:param lr_schedule: Learning rate schedule (could be constant)
|
|
:param net_arch: The specification of the policy and value networks.
|
|
:param activation_fn: Activation function
|
|
:param use_sde: Whether to use State Dependent Exploration or not
|
|
:param log_std_init: Initial value for the log standard deviation
|
|
:param sde_net_arch: Network architecture for extracting features
|
|
when using gSDE. If None, the latent features from the policy will be used.
|
|
Pass an empty list to use the states as features.
|
|
:param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure
|
|
a positive standard deviation (cf paper). It allows to keep variance
|
|
above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.
|
|
:param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.
|
|
:param features_extractor_class: Features extractor to use.
|
|
:param normalize_images: Whether to normalize images or not,
|
|
dividing by 255.0 (True by default)
|
|
:param optimizer_class: The optimizer to use,
|
|
``th.optim.Adam`` by default
|
|
:param optimizer_kwargs: Additional keyword arguments,
|
|
excluding the learning rate, to pass to the optimizer
|
|
:param n_critics: Number of critic networks to create.
|
|
:param share_features_extractor: Whether to share or not the features extractor
|
|
between the actor and the critic (this saves computation time)
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
observation_space: gym.spaces.Space,
|
|
action_space: gym.spaces.Space,
|
|
lr_schedule: Schedule,
|
|
net_arch: Optional[Union[List[int], Dict[str, List[int]]]] = None,
|
|
activation_fn: Type[nn.Module] = nn.ReLU,
|
|
use_sde: bool = False,
|
|
log_std_init: float = -3,
|
|
sde_net_arch: Optional[List[int]] = None,
|
|
use_expln: bool = False,
|
|
clip_mean: float = 2.0,
|
|
features_extractor_class: Type[BaseFeaturesExtractor] = NatureCNN,
|
|
features_extractor_kwargs: Optional[Dict[str, Any]] = None,
|
|
normalize_images: bool = True,
|
|
optimizer_class: Type[th.optim.Optimizer] = th.optim.Adam,
|
|
optimizer_kwargs: Optional[Dict[str, Any]] = None,
|
|
n_critics: int = 2,
|
|
share_features_extractor: bool = True,
|
|
):
|
|
super().__init__(
|
|
observation_space,
|
|
action_space,
|
|
lr_schedule,
|
|
net_arch,
|
|
activation_fn,
|
|
use_sde,
|
|
log_std_init,
|
|
sde_net_arch,
|
|
use_expln,
|
|
clip_mean,
|
|
features_extractor_class,
|
|
features_extractor_kwargs,
|
|
normalize_images,
|
|
optimizer_class,
|
|
optimizer_kwargs,
|
|
n_critics,
|
|
share_features_extractor,
|
|
)
|
|
|
|
|
|
class MultiInputPolicy(SACPolicy):
|
|
"""
|
|
Policy class (with both actor and critic) for SAC.
|
|
|
|
:param observation_space: Observation space
|
|
:param action_space: Action space
|
|
:param lr_schedule: Learning rate schedule (could be constant)
|
|
:param net_arch: The specification of the policy and value networks.
|
|
:param activation_fn: Activation function
|
|
:param use_sde: Whether to use State Dependent Exploration or not
|
|
:param log_std_init: Initial value for the log standard deviation
|
|
:param sde_net_arch: Network architecture for extracting features
|
|
when using gSDE. If None, the latent features from the policy will be used.
|
|
Pass an empty list to use the states as features.
|
|
:param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure
|
|
a positive standard deviation (cf paper). It allows to keep variance
|
|
above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.
|
|
:param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.
|
|
:param features_extractor_class: Features extractor to use.
|
|
:param normalize_images: Whether to normalize images or not,
|
|
dividing by 255.0 (True by default)
|
|
:param optimizer_class: The optimizer to use,
|
|
``th.optim.Adam`` by default
|
|
:param optimizer_kwargs: Additional keyword arguments,
|
|
excluding the learning rate, to pass to the optimizer
|
|
:param n_critics: Number of critic networks to create.
|
|
:param share_features_extractor: Whether to share or not the features extractor
|
|
between the actor and the critic (this saves computation time)
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
observation_space: gym.spaces.Space,
|
|
action_space: gym.spaces.Space,
|
|
lr_schedule: Schedule,
|
|
net_arch: Optional[Union[List[int], Dict[str, List[int]]]] = None,
|
|
activation_fn: Type[nn.Module] = nn.ReLU,
|
|
use_sde: bool = False,
|
|
log_std_init: float = -3,
|
|
sde_net_arch: Optional[List[int]] = None,
|
|
use_expln: bool = False,
|
|
clip_mean: float = 2.0,
|
|
features_extractor_class: Type[BaseFeaturesExtractor] = CombinedExtractor,
|
|
features_extractor_kwargs: Optional[Dict[str, Any]] = None,
|
|
normalize_images: bool = True,
|
|
optimizer_class: Type[th.optim.Optimizer] = th.optim.Adam,
|
|
optimizer_kwargs: Optional[Dict[str, Any]] = None,
|
|
n_critics: int = 2,
|
|
share_features_extractor: bool = True,
|
|
):
|
|
super().__init__(
|
|
observation_space,
|
|
action_space,
|
|
lr_schedule,
|
|
net_arch,
|
|
activation_fn,
|
|
use_sde,
|
|
log_std_init,
|
|
sde_net_arch,
|
|
use_expln,
|
|
clip_mean,
|
|
features_extractor_class,
|
|
features_extractor_kwargs,
|
|
normalize_images,
|
|
optimizer_class,
|
|
optimizer_kwargs,
|
|
n_critics,
|
|
share_features_extractor,
|
|
)
|