metastable-baselines/sb3_trl/misc/distTools.py

52 lines
1.9 KiB
Python

import torch as th
from stable_baselines3.common.distributions import Distribution as SB3_Distribution
def get_mean_and_chol(p, expand=False):
if isinstance(p, th.distributions.Normal):
if expand:
return p.mean, th.diag_embed(p.stddev)
else:
return p.mean, p.stddev
elif isinstance(p, th.distributions.MultivariateNormal):
return p.mean, p.scale_tril
elif isinstance(p, SB3_Distribution):
return get_mean_and_chol(p.distribution)
else:
raise Exception('Dist-Type not implemented')
def get_cov(p):
if isinstance(p, th.distributions.Normal):
return th.diag_embed(p.variance)
elif isinstance(p, th.distributions.MultivariateNormal):
return p.covariance_matrix
elif isinstance(p, SB3_Distribution):
return get_cov(p.distribution)
else:
raise Exception('Dist-Type not implemented')
def new_dist_like(orig_p, mean, chol):
if isinstance(orig_p, th.distributions.Normal):
if orig_p.stddev.shape != chol.shape:
chol = th.diagonal(chol, dim1=1, dim2=2)
return th.distributions.Normal(mean, chol)
elif isinstance(orig_p, th.distributions.MultivariateNormal):
return th.distributions.MultivariateNormal(mean, scale_tril=chol)
elif isinstance(orig_p, SB3_Distribution):
p = orig_p.distribution
if isinstance(p, th.distributions.Normal):
p_out = orig_p.__class__(orig_p.action_dim)
p_out.distribution = th.distributions.Normal(mean, chol)
elif isinstance(p, th.distributions.MultivariateNormal):
p_out = orig_p.__class__(orig_p.action_dim)
p_out.distribution = th.distributions.MultivariateNormal(
mean, scale_tril=chol)
else:
raise Exception('Dist-Type not implemented (of sb3 dist)')
return p_out
else:
raise Exception('Dist-Type not implemented')