metastable-baselines2/metastable_baselines2/common/off_policy_algorithm.py

556 lines
24 KiB
Python
Raw Normal View History

2023-08-21 16:43:41 +02:00
from stable_baselines3.common.off_policy_algorithm import *
class BetterOffPolicyAlgorithm(OffPolicyAlgorithm):
"""
The base for Off-Policy algorithms (ex: SAC/TD3)
:param policy: The policy model to use (MlpPolicy, CnnPolicy, ...)
:param env: The environment to learn from
(if registered in Gym, can be str. Can be None for loading trained models)
:param learning_rate: learning rate for the optimizer,
it can be a function of the current progress remaining (from 1 to 0)
:param buffer_size: size of the replay buffer
:param learning_starts: how many steps of the model to collect transitions for before learning starts
:param batch_size: Minibatch size for each gradient update
:param tau: the soft update coefficient ("Polyak update", between 0 and 1)
:param gamma: the discount factor
:param train_freq: Update the model every ``train_freq`` steps. Alternatively pass a tuple of frequency and unit
like ``(5, "step")`` or ``(2, "episode")``.
:param gradient_steps: How many gradient steps to do after each rollout (see ``train_freq``)
Set to ``-1`` means to do as many gradient steps as steps done in the environment
during the rollout.
:param action_noise: the action noise type (None by default), this can help
for hard exploration problem. Cf common.noise for the different action noise type.
:param replay_buffer_class: Replay buffer class to use (for instance ``HerReplayBuffer``).
If ``None``, it will be automatically selected.
:param replay_buffer_kwargs: Keyword arguments to pass to the replay buffer on creation.
:param optimize_memory_usage: Enable a memory efficient variant of the replay buffer
at a cost of more complexity.
See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195
:param policy_kwargs: Additional arguments to be passed to the policy on creation
:param stats_window_size: Window size for the rollout logging, specifying the number of episodes to average
the reported success rate, mean episode length, and mean reward over
:param tensorboard_log: the log location for tensorboard (if None, no logging)
:param verbose: Verbosity level: 0 for no output, 1 for info messages (such as device or wrappers used), 2 for
debug messages
:param device: Device on which the code should run.
By default, it will try to use a Cuda compatible device and fallback to cpu
if it is not possible.
:param support_multi_env: Whether the algorithm supports training
with multiple environments (as in A2C)
:param monitor_wrapper: When creating an environment, whether to wrap it
or not in a Monitor wrapper.
:param seed: Seed for the pseudo random generators
:param use_sde: Whether to use State Dependent Exploration (SDE)
instead of action noise exploration (default: False)
:param sde_sample_freq: Sample a new noise matrix every n steps when using gSDE
Default: -1 (only sample at the beginning of the rollout)
:param use_sde_at_warmup: Whether to use gSDE instead of uniform sampling
during the warm up phase (before learning starts)
:param sde_support: Whether the model support gSDE or not
:param supported_action_spaces: The action spaces supported by the algorithm.
"""
def __init__(
self,
policy: Union[str, Type[BasePolicy]],
env: Union[GymEnv, str],
learning_rate: Union[float, Schedule],
buffer_size: int = 1_000_000, # 1e6
learning_starts: int = 100,
batch_size: int = 256,
tau: float = 0.005,
gamma: float = 0.99,
train_freq: Union[int, Tuple[int, str]] = (1, "step"),
gradient_steps: int = 1,
action_noise: Optional[ActionNoise] = None,
replay_buffer_class: Optional[Type[ReplayBuffer]] = None,
replay_buffer_kwargs: Optional[Dict[str, Any]] = None,
optimize_memory_usage: bool = False,
policy_kwargs: Optional[Dict[str, Any]] = None,
stats_window_size: int = 100,
tensorboard_log: Optional[str] = None,
verbose: int = 0,
device: Union[th.device, str] = "auto",
support_multi_env: bool = False,
monitor_wrapper: bool = True,
seed: Optional[int] = None,
use_sde: bool = False,
sde_sample_freq: int = -1,
use_sde_at_warmup: bool = False,
sde_support: bool = True,
use_pca: bool = False,
supported_action_spaces: Optional[Tuple[spaces.Space, ...]] = None,
):
assert not (use_sde and use_pca)
self.use_pca = use_pca
policy_kwargs["use_pca"] = self.use_pca
2023-08-21 16:43:41 +02:00
super().__init__(
policy=policy,
env=env,
learning_rate=learning_rate,
policy_kwargs=policy_kwargs,
stats_window_size=stats_window_size,
tensorboard_log=tensorboard_log,
verbose=verbose,
device=device,
support_multi_env=support_multi_env,
monitor_wrapper=monitor_wrapper,
seed=seed,
use_sde=use_sde,
sde_sample_freq=sde_sample_freq,
supported_action_spaces=supported_action_spaces,
buffer_size=buffer_size,
batch_size=batch_size,
learning_starts=learning_starts,
tau=tau,
gamma=gamma,
gradient_steps=gradient_steps,
action_noise=action_noise,
optimize_memory_usage=optimize_memory_usage,
replay_buffer_class=replay_buffer_class,
replay_buffer_kwargs=replay_buffer_kwargs,
train_freq=train_freq,
use_sde_at_warmup=use_sde_at_warmup,
sde_support=sde_support,
)
def _convert_train_freq(self) -> None:
"""
Convert `train_freq` parameter (int or tuple)
to a TrainFreq object.
"""
if not isinstance(self.train_freq, TrainFreq):
train_freq = self.train_freq
# The value of the train frequency will be checked later
if not isinstance(train_freq, tuple):
train_freq = (train_freq, "step")
try:
train_freq = (train_freq[0], TrainFrequencyUnit(train_freq[1]))
except ValueError as e:
raise ValueError(
f"The unit of the `train_freq` must be either 'step' or 'episode' not '{train_freq[1]}'!"
) from e
if not isinstance(train_freq[0], int):
raise ValueError(f"The frequency of `train_freq` must be an integer and not {train_freq[0]}")
self.train_freq = TrainFreq(*train_freq)
def _setup_model(self) -> None:
self._setup_lr_schedule()
self.set_random_seed(self.seed)
if self.replay_buffer_class is None:
if isinstance(self.observation_space, spaces.Dict):
self.replay_buffer_class = DictReplayBuffer
else:
self.replay_buffer_class = ReplayBuffer
if self.replay_buffer is None:
# Make a local copy as we should not pickle
# the environment when using HerReplayBuffer
replay_buffer_kwargs = self.replay_buffer_kwargs.copy()
if issubclass(self.replay_buffer_class, HerReplayBuffer):
assert self.env is not None, "You must pass an environment when using `HerReplayBuffer`"
replay_buffer_kwargs["env"] = self.env
self.replay_buffer = self.replay_buffer_class(
self.buffer_size,
self.observation_space,
self.action_space,
device=self.device,
n_envs=self.n_envs,
optimize_memory_usage=self.optimize_memory_usage,
**replay_buffer_kwargs, # pytype:disable=wrong-keyword-args
)
self.policy = self.policy_class( # pytype:disable=not-instantiable
self.observation_space,
self.action_space,
self.lr_schedule,
**self.policy_kwargs, # pytype:disable=not-instantiable
)
self.policy = self.policy.to(self.device)
# Convert train freq parameter to TrainFreq object
self._convert_train_freq()
def save_replay_buffer(self, path: Union[str, pathlib.Path, io.BufferedIOBase]) -> None:
"""
Save the replay buffer as a pickle file.
:param path: Path to the file where the replay buffer should be saved.
if path is a str or pathlib.Path, the path is automatically created if necessary.
"""
assert self.replay_buffer is not None, "The replay buffer is not defined"
save_to_pkl(path, self.replay_buffer, self.verbose)
def load_replay_buffer(
self,
path: Union[str, pathlib.Path, io.BufferedIOBase],
truncate_last_traj: bool = True,
) -> None:
"""
Load a replay buffer from a pickle file.
:param path: Path to the pickled replay buffer.
:param truncate_last_traj: When using ``HerReplayBuffer`` with online sampling:
If set to ``True``, we assume that the last trajectory in the replay buffer was finished
(and truncate it).
If set to ``False``, we assume that we continue the same trajectory (same episode).
"""
self.replay_buffer = load_from_pkl(path, self.verbose)
assert isinstance(self.replay_buffer, ReplayBuffer), "The replay buffer must inherit from ReplayBuffer class"
# Backward compatibility with SB3 < 2.1.0 replay buffer
# Keep old behavior: do not handle timeout termination separately
if not hasattr(self.replay_buffer, "handle_timeout_termination"): # pragma: no cover
self.replay_buffer.handle_timeout_termination = False
self.replay_buffer.timeouts = np.zeros_like(self.replay_buffer.dones)
if isinstance(self.replay_buffer, HerReplayBuffer):
assert self.env is not None, "You must pass an environment at load time when using `HerReplayBuffer`"
self.replay_buffer.set_env(self.get_env())
if truncate_last_traj:
self.replay_buffer.truncate_last_trajectory()
def _setup_learn(
self,
total_timesteps: int,
callback: MaybeCallback = None,
reset_num_timesteps: bool = True,
tb_log_name: str = "run",
progress_bar: bool = False,
) -> Tuple[int, BaseCallback]:
"""
cf `BaseAlgorithm`.
"""
# Prevent continuity issue by truncating trajectory
# when using memory efficient replay buffer
# see https://github.com/DLR-RM/stable-baselines3/issues/46
replay_buffer = self.replay_buffer
truncate_last_traj = (
self.optimize_memory_usage
and reset_num_timesteps
and replay_buffer is not None
and (replay_buffer.full or replay_buffer.pos > 0)
)
if truncate_last_traj:
warnings.warn(
"The last trajectory in the replay buffer will be truncated, "
"see https://github.com/DLR-RM/stable-baselines3/issues/46."
"You should use `reset_num_timesteps=False` or `optimize_memory_usage=False`"
"to avoid that issue."
)
# Go to the previous index
pos = (replay_buffer.pos - 1) % replay_buffer.buffer_size
replay_buffer.dones[pos] = True
return super()._setup_learn(
total_timesteps,
callback,
reset_num_timesteps,
tb_log_name,
progress_bar,
)
def learn(
self: SelfOffPolicyAlgorithm,
total_timesteps: int,
callback: MaybeCallback = None,
log_interval: int = 4,
tb_log_name: str = "run",
reset_num_timesteps: bool = True,
progress_bar: bool = False,
) -> SelfOffPolicyAlgorithm:
total_timesteps, callback = self._setup_learn(
total_timesteps,
callback,
reset_num_timesteps,
tb_log_name,
progress_bar,
)
callback.on_training_start(locals(), globals())
while self.num_timesteps < total_timesteps:
rollout = self.collect_rollouts(
self.env,
train_freq=self.train_freq,
action_noise=self.action_noise,
callback=callback,
learning_starts=self.learning_starts,
replay_buffer=self.replay_buffer,
log_interval=log_interval,
)
if rollout.continue_training is False:
break
if self.num_timesteps > 0 and self.num_timesteps > self.learning_starts:
# If no `gradient_steps` is specified,
# do as many gradients steps as steps performed during the rollout
gradient_steps = self.gradient_steps if self.gradient_steps >= 0 else rollout.episode_timesteps
# Special case when the user passes `gradient_steps=0`
if gradient_steps > 0:
self.train(batch_size=self.batch_size, gradient_steps=gradient_steps)
callback.on_training_end()
return self
def train(self, gradient_steps: int, batch_size: int) -> None:
"""
Sample the replay buffer and do the updates
(gradient descent and update target networks)
"""
raise NotImplementedError()
def _sample_action(
self,
learning_starts: int,
action_noise: Optional[ActionNoise] = None,
n_envs: int = 1,
) -> Tuple[np.ndarray, np.ndarray]:
"""
Sample an action according to the exploration policy.
This is either done by sampling the probability distribution of the policy,
or sampling a random action (from a uniform distribution over the action space)
or by adding noise to the deterministic output.
:param action_noise: Action noise that will be used for exploration
Required for deterministic policy (e.g. TD3). This can also be used
in addition to the stochastic policy for SAC.
:param learning_starts: Number of steps before learning for the warm-up phase.
:param n_envs:
:return: action to take in the environment
and scaled action that will be stored in the replay buffer.
The two differs when the action space is not normalized (bounds are not [-1, 1]).
"""
# Select action randomly or according to policy
if self.num_timesteps < learning_starts and not (self.use_sde and self.use_sde_at_warmup):
# Warmup phase
unscaled_action = np.array([self.action_space.sample() for _ in range(n_envs)])
else:
# Note: when using continuous actions,
# we assume that the policy uses tanh to scale the action
# We use non-deterministic action in the case of SAC, for TD3, it does not matter
unscaled_action, _ = self.predict(self._last_obs, deterministic=False)
# Rescale the action from [low, high] to [-1, 1]
if isinstance(self.action_space, spaces.Box):
scaled_action = self.policy.scale_action(unscaled_action)
# Add noise to the action (improve exploration)
if action_noise is not None:
scaled_action = np.clip(scaled_action + action_noise(), -1, 1)
# We store the scaled action in the buffer
buffer_action = scaled_action
action = self.policy.unscale_action(scaled_action)
else:
# Discrete case, no need to normalize or clip
buffer_action = unscaled_action
action = buffer_action
return action, buffer_action
def _dump_logs(self) -> None:
"""
Write log.
"""
time_elapsed = max((time.time_ns() - self.start_time) / 1e9, sys.float_info.epsilon)
fps = int((self.num_timesteps - self._num_timesteps_at_start) / time_elapsed)
self.logger.record("time/episodes", self._episode_num, exclude="tensorboard")
if len(self.ep_info_buffer) > 0 and len(self.ep_info_buffer[0]) > 0:
self.logger.record("rollout/ep_rew_mean", safe_mean([ep_info["r"] for ep_info in self.ep_info_buffer]))
self.logger.record("rollout/ep_len_mean", safe_mean([ep_info["l"] for ep_info in self.ep_info_buffer]))
self.logger.record("time/fps", fps)
self.logger.record("time/time_elapsed", int(time_elapsed), exclude="tensorboard")
self.logger.record("time/total_timesteps", self.num_timesteps, exclude="tensorboard")
if self.use_sde or self.use_pca:
self.logger.record("train/std", (self.actor.get_std()).mean().item())
if len(self.ep_success_buffer) > 0:
self.logger.record("rollout/success_rate", safe_mean(self.ep_success_buffer))
# Pass the number of timesteps for tensorboard
self.logger.dump(step=self.num_timesteps)
def _on_step(self) -> None:
"""
Method called after each step in the environment.
It is meant to trigger DQN target network update
but can be used for other purposes
"""
pass
def _store_transition(
self,
replay_buffer: ReplayBuffer,
buffer_action: np.ndarray,
new_obs: Union[np.ndarray, Dict[str, np.ndarray]],
reward: np.ndarray,
dones: np.ndarray,
infos: List[Dict[str, Any]],
) -> None:
"""
Store transition in the replay buffer.
We store the normalized action and the unnormalized observation.
It also handles terminal observations (because VecEnv resets automatically).
:param replay_buffer: Replay buffer object where to store the transition.
:param buffer_action: normalized action
:param new_obs: next observation in the current episode
or first observation of the episode (when dones is True)
:param reward: reward for the current transition
:param dones: Termination signal
:param infos: List of additional information about the transition.
It may contain the terminal observations and information about timeout.
"""
# Store only the unnormalized version
if self._vec_normalize_env is not None:
new_obs_ = self._vec_normalize_env.get_original_obs()
reward_ = self._vec_normalize_env.get_original_reward()
else:
# Avoid changing the original ones
self._last_original_obs, new_obs_, reward_ = self._last_obs, new_obs, reward
# Avoid modification by reference
next_obs = deepcopy(new_obs_)
# As the VecEnv resets automatically, new_obs is already the
# first observation of the next episode
for i, done in enumerate(dones):
if done and infos[i].get("terminal_observation") is not None:
if isinstance(next_obs, dict):
next_obs_ = infos[i]["terminal_observation"]
# VecNormalize normalizes the terminal observation
if self._vec_normalize_env is not None:
next_obs_ = self._vec_normalize_env.unnormalize_obs(next_obs_)
# Replace next obs for the correct envs
for key in next_obs.keys():
next_obs[key][i] = next_obs_[key]
else:
next_obs[i] = infos[i]["terminal_observation"]
# VecNormalize normalizes the terminal observation
if self._vec_normalize_env is not None:
next_obs[i] = self._vec_normalize_env.unnormalize_obs(next_obs[i, :])
replay_buffer.add(
self._last_original_obs,
next_obs,
buffer_action,
reward_,
dones,
infos,
)
self._last_obs = new_obs
# Save the unnormalized observation
if self._vec_normalize_env is not None:
self._last_original_obs = new_obs_
def collect_rollouts(
self,
env: VecEnv,
callback: BaseCallback,
train_freq: TrainFreq,
replay_buffer: ReplayBuffer,
action_noise: Optional[ActionNoise] = None,
learning_starts: int = 0,
log_interval: Optional[int] = None,
) -> RolloutReturn:
"""
Collect experiences and store them into a ``ReplayBuffer``.
:param env: The training environment
:param callback: Callback that will be called at each step
(and at the beginning and end of the rollout)
:param train_freq: How much experience to collect
by doing rollouts of current policy.
Either ``TrainFreq(<n>, TrainFrequencyUnit.STEP)``
or ``TrainFreq(<n>, TrainFrequencyUnit.EPISODE)``
with ``<n>`` being an integer greater than 0.
:param action_noise: Action noise that will be used for exploration
Required for deterministic policy (e.g. TD3). This can also be used
in addition to the stochastic policy for SAC.
:param learning_starts: Number of steps before learning for the warm-up phase.
:param replay_buffer:
:param log_interval: Log data every ``log_interval`` episodes
:return:
"""
# Switch to eval mode (this affects batch norm / dropout)
self.policy.set_training_mode(False)
num_collected_steps, num_collected_episodes = 0, 0
assert isinstance(env, VecEnv), "You must pass a VecEnv"
assert train_freq.frequency > 0, "Should at least collect one step or episode."
if env.num_envs > 1:
assert train_freq.unit == TrainFrequencyUnit.STEP, "You must use only one env when doing episodic training."
# Vectorize action noise if needed
if action_noise is not None and env.num_envs > 1 and not isinstance(action_noise, VectorizedActionNoise):
action_noise = VectorizedActionNoise(action_noise, env.num_envs)
2023-09-07 21:07:46 +02:00
if self.use_sde or self.use_pca:
2023-08-21 16:43:41 +02:00
self.actor.reset_noise(env.num_envs)
callback.on_rollout_start()
continue_training = True
while should_collect_more_steps(train_freq, num_collected_steps, num_collected_episodes):
2023-09-07 21:07:46 +02:00
if (self.use_sde or self.use_pca) and self.sde_sample_freq > 0 and num_collected_steps % self.sde_sample_freq == 0:
2023-08-21 16:43:41 +02:00
# Sample a new noise matrix
self.actor.reset_noise(env.num_envs)
# Select action randomly or according to policy
actions, buffer_actions = self._sample_action(learning_starts, action_noise, env.num_envs)
# Rescale and perform action
new_obs, rewards, dones, infos = env.step(actions)
self.num_timesteps += env.num_envs
num_collected_steps += 1
# Give access to local variables
callback.update_locals(locals())
# Only stop training if return value is False, not when it is None.
if callback.on_step() is False:
return RolloutReturn(num_collected_steps * env.num_envs, num_collected_episodes, continue_training=False)
# Retrieve reward and episode length if using Monitor wrapper
self._update_info_buffer(infos, dones)
# Store data in replay buffer (normalized action and unnormalized observation)
self._store_transition(replay_buffer, buffer_actions, new_obs, rewards, dones, infos)
self._update_current_progress_remaining(self.num_timesteps, self._total_timesteps)
# For DQN, check if the target network should be updated
# and update the exploration schedule
# For SAC/TD3, the update is dones as the same time as the gradient update
# see https://github.com/hill-a/stable-baselines/issues/900
self._on_step()
for idx, done in enumerate(dones):
if done:
# Update stats
num_collected_episodes += 1
self._episode_num += 1
if action_noise is not None:
kwargs = dict(indices=[idx]) if env.num_envs > 1 else {}
action_noise.reset(**kwargs)
# Log training infos
if log_interval is not None and self._episode_num % log_interval == 0:
self._dump_logs()
callback.on_rollout_end()
return RolloutReturn(num_collected_steps * env.num_envs, num_collected_episodes, continue_training)