metastable-baselines2/sbBrix/sac/sac.py

327 lines
15 KiB
Python
Raw Normal View History

2023-08-14 10:50:53 +02:00
from typing import Any, Dict, List, Optional, Tuple, Type, TypeVar, Union
import numpy as np
import torch as th
from gym import spaces
from torch.nn import functional as F
from stable_baselines3.common.buffers import ReplayBuffer
from stable_baselines3.common.noise import ActionNoise
2023-08-21 16:43:41 +02:00
# from stable_baselines3.common.off_policy_algorithm import OffPolicyAlgorithm
2023-08-22 00:17:09 +02:00
from ..common.off_policy_algorithm import BetterOffPolicyAlgorithm
2023-08-14 10:50:53 +02:00
from stable_baselines3.common.policies import BasePolicy
from stable_baselines3.common.type_aliases import GymEnv, MaybeCallback, Schedule
from stable_baselines3.common.utils import get_parameters_by_name, polyak_update
2023-08-22 00:19:13 +02:00
from ..common.policies import MlpPolicy, SACPolicy
2023-08-14 10:50:53 +02:00
SelfSAC = TypeVar("SelfSAC", bound="SAC")
2023-08-21 16:43:41 +02:00
class SAC(BetterOffPolicyAlgorithm):
2023-08-14 10:50:53 +02:00
"""
Soft Actor-Critic (SAC)
Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor,
This implementation borrows code from original implementation (https://github.com/haarnoja/sac)
from OpenAI Spinning Up (https://github.com/openai/spinningup), from the softlearning repo
(https://github.com/rail-berkeley/softlearning/)
and from Stable Baselines (https://github.com/hill-a/stable-baselines)
Paper: https://arxiv.org/abs/1801.01290
Introduction to SAC: https://spinningup.openai.com/en/latest/algorithms/sac.html
Note: we use double q target and not value target as discussed
in https://github.com/hill-a/stable-baselines/issues/270
:param policy: The policy model to use (MlpPolicy, CnnPolicy, ...)
:param env: The environment to learn from (if registered in Gym, can be str)
:param learning_rate: learning rate for adam optimizer,
the same learning rate will be used for all networks (Q-Values, Actor and Value function)
it can be a function of the current progress remaining (from 1 to 0)
:param buffer_size: size of the replay buffer
:param learning_starts: how many steps of the model to collect transitions for before learning starts
:param batch_size: Minibatch size for each gradient update
:param tau: the soft update coefficient ("Polyak update", between 0 and 1)
:param gamma: the discount factor
:param train_freq: Update the model every ``train_freq`` steps. Alternatively pass a tuple of frequency and unit
like ``(5, "step")`` or ``(2, "episode")``.
:param gradient_steps: How many gradient steps to do after each rollout (see ``train_freq``)
Set to ``-1`` means to do as many gradient steps as steps done in the environment
during the rollout.
:param action_noise: the action noise type (None by default), this can help
for hard exploration problem. Cf common.noise for the different action noise type.
:param replay_buffer_class: Replay buffer class to use (for instance ``HerReplayBuffer``).
If ``None``, it will be automatically selected.
:param replay_buffer_kwargs: Keyword arguments to pass to the replay buffer on creation.
:param optimize_memory_usage: Enable a memory efficient variant of the replay buffer
at a cost of more complexity.
See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195
:param ent_coef: Entropy regularization coefficient. (Equivalent to
inverse of reward scale in the original SAC paper.) Controlling exploration/exploitation trade-off.
Set it to 'auto' to learn it automatically (and 'auto_0.1' for using 0.1 as initial value)
:param target_update_interval: update the target network every ``target_network_update_freq``
gradient steps.
:param target_entropy: target entropy when learning ``ent_coef`` (``ent_coef = 'auto'``)
:param use_sde: Whether to use generalized State Dependent Exploration (gSDE)
instead of action noise exploration (default: False)
:param sde_sample_freq: Sample a new noise matrix every n steps when using gSDE
Default: -1 (only sample at the beginning of the rollout)
:param use_sde_at_warmup: Whether to use gSDE instead of uniform sampling
during the warm up phase (before learning starts)
:param stats_window_size: Window size for the rollout logging, specifying the number of episodes to average
the reported success rate, mean episode length, and mean reward over
:param tensorboard_log: the log location for tensorboard (if None, no logging)
:param policy_kwargs: additional arguments to be passed to the policy on creation
:param verbose: Verbosity level: 0 for no output, 1 for info messages (such as device or wrappers used), 2 for
debug messages
:param seed: Seed for the pseudo random generators
:param device: Device (cpu, cuda, ...) on which the code should be run.
Setting it to auto, the code will be run on the GPU if possible.
:param _init_setup_model: Whether or not to build the network at the creation of the instance
"""
policy_aliases: Dict[str, Type[BasePolicy]] = {
"MlpPolicy": MlpPolicy,
"CnnPolicy": CnnPolicy,
"MultiInputPolicy": MultiInputPolicy,
}
def __init__(
self,
policy: Union[str, Type[SACPolicy]],
env: Union[GymEnv, str],
learning_rate: Union[float, Schedule] = 3e-4,
buffer_size: int = 1_000_000, # 1e6
learning_starts: int = 100,
batch_size: int = 256,
tau: float = 0.005,
gamma: float = 0.99,
train_freq: Union[int, Tuple[int, str]] = 1,
gradient_steps: int = 1,
action_noise: Optional[ActionNoise] = None,
replay_buffer_class: Optional[Type[ReplayBuffer]] = None,
replay_buffer_kwargs: Optional[Dict[str, Any]] = None,
optimize_memory_usage: bool = False,
ent_coef: Union[str, float] = "auto",
target_update_interval: int = 1,
target_entropy: Union[str, float] = "auto",
use_sde: bool = False,
sde_sample_freq: int = -1,
use_sde_at_warmup: bool = False,
2023-08-22 00:10:54 +02:00
use_pca: bool = False,
2023-08-14 10:50:53 +02:00
stats_window_size: int = 100,
tensorboard_log: Optional[str] = None,
policy_kwargs: Optional[Dict[str, Any]] = None,
verbose: int = 0,
seed: Optional[int] = None,
device: Union[th.device, str] = "auto",
_init_setup_model: bool = True,
):
super().__init__(
policy,
env,
learning_rate,
buffer_size,
learning_starts,
batch_size,
tau,
gamma,
train_freq,
gradient_steps,
action_noise,
replay_buffer_class=replay_buffer_class,
replay_buffer_kwargs=replay_buffer_kwargs,
policy_kwargs=policy_kwargs,
stats_window_size=stats_window_size,
tensorboard_log=tensorboard_log,
verbose=verbose,
device=device,
seed=seed,
use_sde=use_sde,
sde_sample_freq=sde_sample_freq,
use_sde_at_warmup=use_sde_at_warmup,
2023-08-22 00:10:54 +02:00
use_pca=use_pca,
2023-08-14 10:50:53 +02:00
optimize_memory_usage=optimize_memory_usage,
supported_action_spaces=(spaces.Box),
support_multi_env=True,
)
print('[i] Using sbBrix version of SAC')
self.target_entropy = target_entropy
self.log_ent_coef = None # type: Optional[th.Tensor]
# Entropy coefficient / Entropy temperature
# Inverse of the reward scale
self.ent_coef = ent_coef
self.target_update_interval = target_update_interval
self.ent_coef_optimizer = None
if _init_setup_model:
self._setup_model()
def _setup_model(self) -> None:
super()._setup_model()
self._create_aliases()
# Running mean and running var
self.batch_norm_stats = get_parameters_by_name(self.critic, ["running_"])
self.batch_norm_stats_target = get_parameters_by_name(self.critic_target, ["running_"])
# Target entropy is used when learning the entropy coefficient
if self.target_entropy == "auto":
# automatically set target entropy if needed
self.target_entropy = -np.prod(self.env.action_space.shape).astype(np.float32)
else:
# Force conversion
# this will also throw an error for unexpected string
self.target_entropy = float(self.target_entropy)
# The entropy coefficient or entropy can be learned automatically
# see Automating Entropy Adjustment for Maximum Entropy RL section
# of https://arxiv.org/abs/1812.05905
if isinstance(self.ent_coef, str) and self.ent_coef.startswith("auto"):
# Default initial value of ent_coef when learned
init_value = 1.0
if "_" in self.ent_coef:
init_value = float(self.ent_coef.split("_")[1])
assert init_value > 0.0, "The initial value of ent_coef must be greater than 0"
# Note: we optimize the log of the entropy coeff which is slightly different from the paper
# as discussed in https://github.com/rail-berkeley/softlearning/issues/37
self.log_ent_coef = th.log(th.ones(1, device=self.device) * init_value).requires_grad_(True)
self.ent_coef_optimizer = th.optim.Adam([self.log_ent_coef], lr=self.lr_schedule(1))
else:
# Force conversion to float
# this will throw an error if a malformed string (different from 'auto')
# is passed
self.ent_coef_tensor = th.tensor(float(self.ent_coef), device=self.device)
def _create_aliases(self) -> None:
self.actor = self.policy.actor
self.critic = self.policy.critic
self.critic_target = self.policy.critic_target
def train(self, gradient_steps: int, batch_size: int = 64) -> None:
# Switch to train mode (this affects batch norm / dropout)
self.policy.set_training_mode(True)
# Update optimizers learning rate
optimizers = [self.actor.optimizer, self.critic.optimizer]
if self.ent_coef_optimizer is not None:
optimizers += [self.ent_coef_optimizer]
# Update learning rate according to lr schedule
self._update_learning_rate(optimizers)
ent_coef_losses, ent_coefs = [], []
actor_losses, critic_losses = [], []
for gradient_step in range(gradient_steps):
# Sample replay buffer
replay_data = self.replay_buffer.sample(batch_size, env=self._vec_normalize_env)
# We need to sample because `log_std` may have changed between two gradient steps
if self.use_sde:
self.actor.reset_noise()
# Action by the current actor for the sampled state
actions_pi, log_prob = self.actor.action_log_prob(replay_data.observations)
log_prob = log_prob.reshape(-1, 1)
ent_coef_loss = None
if self.ent_coef_optimizer is not None:
# Important: detach the variable from the graph
# so we don't change it with other losses
# see https://github.com/rail-berkeley/softlearning/issues/60
ent_coef = th.exp(self.log_ent_coef.detach())
ent_coef_loss = -(self.log_ent_coef * (log_prob + self.target_entropy).detach()).mean()
ent_coef_losses.append(ent_coef_loss.item())
else:
ent_coef = self.ent_coef_tensor
ent_coefs.append(ent_coef.item())
# Optimize entropy coefficient, also called
# entropy temperature or alpha in the paper
if ent_coef_loss is not None:
self.ent_coef_optimizer.zero_grad()
ent_coef_loss.backward()
self.ent_coef_optimizer.step()
with th.no_grad():
# Select action according to policy
next_actions, next_log_prob = self.actor.action_log_prob(replay_data.next_observations)
# Compute the next Q values: min over all critics targets
next_q_values = th.cat(self.critic_target(replay_data.next_observations, next_actions), dim=1)
next_q_values, _ = th.min(next_q_values, dim=1, keepdim=True)
# add entropy term
next_q_values = next_q_values - ent_coef * next_log_prob.reshape(-1, 1)
# td error + entropy term
target_q_values = replay_data.rewards + (1 - replay_data.dones) * self.gamma * next_q_values
# Get current Q-values estimates for each critic network
# using action from the replay buffer
current_q_values = self.critic(replay_data.observations, replay_data.actions)
# Compute critic loss
critic_loss = 0.5 * sum(F.mse_loss(current_q, target_q_values) for current_q in current_q_values)
critic_losses.append(critic_loss.item())
# Optimize the critic
self.critic.optimizer.zero_grad()
critic_loss.backward()
self.critic.optimizer.step()
# Compute actor loss
# Alternative: actor_loss = th.mean(log_prob - qf1_pi)
# Min over all critic networks
q_values_pi = th.cat(self.critic(replay_data.observations, actions_pi), dim=1)
min_qf_pi, _ = th.min(q_values_pi, dim=1, keepdim=True)
actor_loss = (ent_coef * log_prob - min_qf_pi).mean()
actor_losses.append(actor_loss.item())
# Optimize the actor
self.actor.optimizer.zero_grad()
actor_loss.backward()
self.actor.optimizer.step()
# Update target networks
if gradient_step % self.target_update_interval == 0:
polyak_update(self.critic.parameters(), self.critic_target.parameters(), self.tau)
# Copy running stats, see GH issue #996
polyak_update(self.batch_norm_stats, self.batch_norm_stats_target, 1.0)
self._n_updates += gradient_steps
self.logger.record("train/n_updates", self._n_updates, exclude="tensorboard")
self.logger.record("train/ent_coef", np.mean(ent_coefs))
self.logger.record("train/actor_loss", np.mean(actor_losses))
self.logger.record("train/critic_loss", np.mean(critic_losses))
if len(ent_coef_losses) > 0:
self.logger.record("train/ent_coef_loss", np.mean(ent_coef_losses))
def learn(
self: SelfSAC,
total_timesteps: int,
callback: MaybeCallback = None,
log_interval: int = 4,
tb_log_name: str = "SAC",
reset_num_timesteps: bool = True,
progress_bar: bool = False,
) -> SelfSAC:
return super().learn(
total_timesteps=total_timesteps,
callback=callback,
log_interval=log_interval,
tb_log_name=tb_log_name,
reset_num_timesteps=reset_num_timesteps,
progress_bar=progress_bar,
)
def _excluded_save_params(self) -> List[str]:
return super()._excluded_save_params() + ["actor", "critic", "critic_target"] # noqa: RUF005
def _get_torch_save_params(self) -> Tuple[List[str], List[str]]:
state_dicts = ["policy", "actor.optimizer", "critic.optimizer"]
if self.ent_coef_optimizer is not None:
saved_pytorch_variables = ["log_ent_coef"]
state_dicts.append("ent_coef_optimizer")
else:
saved_pytorch_variables = ["ent_coef_tensor"]
return state_dicts, saved_pytorch_variables