Wrote tests

This commit is contained in:
Dominik Moritz Roth 2024-03-30 14:42:21 +01:00
parent eed4363ddd
commit 1321e47b81
2 changed files with 15 additions and 2 deletions

View File

@ -7,3 +7,9 @@ from metastable_baselines2 import PPO
def test_trpl(env_id): def test_trpl(env_id):
model = PPO("MlpPolicy", env_id, n_steps=128, seed=0, policy_kwargs=dict(net_arch=[16]), verbose=1) model = PPO("MlpPolicy", env_id, n_steps=128, seed=0, policy_kwargs=dict(net_arch=[16]), verbose=1)
model.learn(total_timesteps=500) model.learn(total_timesteps=500)
@pytest.mark.parametrize("env_id", ["LunarLanderContinuous-v2"])
@pytest.mark.parametrize("par_strength", ['DIAG', 'FULL', 'CONT_DIAG', 'CONT_FULL'])
def test_ppo_pca(env_id, par_strength):
model = PPO("MlpPolicy", env_id, n_steps=128, seed=0, use_pca=True, policy_kwargs=dict(net_arch=[16], dist_kwargs={'par_strength': par_strength, 'skip_conditioning': True}), verbose=1)
model.learn(total_timesteps=100)

View File

@ -3,7 +3,7 @@ import pytest
from metastable_baselines2 import TRPL from metastable_baselines2 import TRPL
PROJECTIONS = ["Frobenius", "Wasserstein"] #, "KL"] PROJECTIONS = ["Frobenius", "Wasserstein"] # KL
@pytest.mark.parametrize("env_id", ["LunarLanderContinuous-v2", "MountainCarContinuous-v0"]) @pytest.mark.parametrize("env_id", ["LunarLanderContinuous-v2", "MountainCarContinuous-v0"])
@pytest.mark.parametrize("projection", PROJECTIONS) @pytest.mark.parametrize("projection", PROJECTIONS)
@ -18,3 +18,10 @@ def test_trpl(env_id, projection):
def test_trpl_params(env_id, projection, mean_bound, cov_bound): def test_trpl_params(env_id, projection, mean_bound, cov_bound):
model = TRPL("MlpPolicy", env_id, n_steps=128, seed=0, policy_kwargs=dict(net_arch=[16]), projection_class=projection, projection_kwargs={'mean_bound': mean_bound, 'cov_bound': cov_bound}, verbose=1) model = TRPL("MlpPolicy", env_id, n_steps=128, seed=0, policy_kwargs=dict(net_arch=[16]), projection_class=projection, projection_kwargs={'mean_bound': mean_bound, 'cov_bound': cov_bound}, verbose=1)
model.learn(total_timesteps=100) model.learn(total_timesteps=100)
@pytest.mark.parametrize("env_id", ["LunarLanderContinuous-v2"])
@pytest.mark.parametrize("projection", PROJECTIONS)
@pytest.mark.parametrize("par_strength", ['DIAG', 'FULL', 'CONT_DIAG', 'CONT_FULL'])
def test_trpl_pca(env_id, projection, par_strength):
model = TRPL("MlpPolicy", env_id, n_steps=128, seed=0, use_pca=True, policy_kwargs=dict(net_arch=[16], dist_kwargs={'par_strength': par_strength, 'skip_conditioning': True}), projection_class=projection, verbose=1)
model.learn(total_timesteps=100)