initial commit
This commit is contained in:
commit
497ee7e5fb
9
.gitignore
vendored
Normal file
9
.gitignore
vendored
Normal file
@ -0,0 +1,9 @@
|
|||||||
|
__pycache__
|
||||||
|
.venv
|
||||||
|
wandb
|
||||||
|
*.egg-info/
|
||||||
|
src
|
||||||
|
slurm_log
|
||||||
|
reports
|
||||||
|
MUJOCO_LOG.TXT
|
||||||
|
job_hist.log
|
12
sbBrix/__init__.py
Normal file
12
sbBrix/__init__.py
Normal file
@ -0,0 +1,12 @@
|
|||||||
|
import os
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
from sbBrix.ppo import PPO
|
||||||
|
from sbBrix.sac import SAC
|
||||||
|
|
||||||
|
__all__ = [
|
||||||
|
"PPO",
|
||||||
|
"SAC",
|
||||||
|
]
|
||||||
|
|
1
sbBrix/ppo/__init__.py
Normal file
1
sbBrix/ppo/__init__.py
Normal file
@ -0,0 +1 @@
|
|||||||
|
from sbBrix.ppo.ppo import PPO
|
318
sbBrix/ppo/ppo.py
Normal file
318
sbBrix/ppo/ppo.py
Normal file
@ -0,0 +1,318 @@
|
|||||||
|
import warnings
|
||||||
|
from typing import Any, Dict, Optional, Type, TypeVar, Union
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import torch as th
|
||||||
|
from gym import spaces
|
||||||
|
from torch.nn import functional as F
|
||||||
|
|
||||||
|
from stable_baselines3.common.on_policy_algorithm import OnPolicyAlgorithm
|
||||||
|
from stable_baselines3.common.policies import ActorCriticCnnPolicy, ActorCriticPolicy, BasePolicy, MultiInputActorCriticPolicy
|
||||||
|
from stable_baselines3.common.type_aliases import GymEnv, MaybeCallback, Schedule
|
||||||
|
from stable_baselines3.common.utils import explained_variance, get_schedule_fn
|
||||||
|
|
||||||
|
SelfPPO = TypeVar("SelfPPO", bound="PPO")
|
||||||
|
|
||||||
|
|
||||||
|
class PPO(OnPolicyAlgorithm):
|
||||||
|
"""
|
||||||
|
Proximal Policy Optimization algorithm (PPO) (clip version)
|
||||||
|
|
||||||
|
Paper: https://arxiv.org/abs/1707.06347
|
||||||
|
Code: This implementation borrows code from OpenAI Spinning Up (https://github.com/openai/spinningup/)
|
||||||
|
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail and
|
||||||
|
Stable Baselines (PPO2 from https://github.com/hill-a/stable-baselines)
|
||||||
|
|
||||||
|
Introduction to PPO: https://spinningup.openai.com/en/latest/algorithms/ppo.html
|
||||||
|
|
||||||
|
:param policy: The policy model to use (MlpPolicy, CnnPolicy, ...)
|
||||||
|
:param env: The environment to learn from (if registered in Gym, can be str)
|
||||||
|
:param learning_rate: The learning rate, it can be a function
|
||||||
|
of the current progress remaining (from 1 to 0)
|
||||||
|
:param n_steps: The number of steps to run for each environment per update
|
||||||
|
(i.e. rollout buffer size is n_steps * n_envs where n_envs is number of environment copies running in parallel)
|
||||||
|
NOTE: n_steps * n_envs must be greater than 1 (because of the advantage normalization)
|
||||||
|
See https://github.com/pytorch/pytorch/issues/29372
|
||||||
|
:param batch_size: Minibatch size
|
||||||
|
:param n_epochs: Number of epoch when optimizing the surrogate loss
|
||||||
|
:param gamma: Discount factor
|
||||||
|
:param gae_lambda: Factor for trade-off of bias vs variance for Generalized Advantage Estimator
|
||||||
|
:param clip_range: Clipping parameter, it can be a function of the current progress
|
||||||
|
remaining (from 1 to 0).
|
||||||
|
:param clip_range_vf: Clipping parameter for the value function,
|
||||||
|
it can be a function of the current progress remaining (from 1 to 0).
|
||||||
|
This is a parameter specific to the OpenAI implementation. If None is passed (default),
|
||||||
|
no clipping will be done on the value function.
|
||||||
|
IMPORTANT: this clipping depends on the reward scaling.
|
||||||
|
:param normalize_advantage: Whether to normalize or not the advantage
|
||||||
|
:param ent_coef: Entropy coefficient for the loss calculation
|
||||||
|
:param vf_coef: Value function coefficient for the loss calculation
|
||||||
|
:param max_grad_norm: The maximum value for the gradient clipping
|
||||||
|
:param use_sde: Whether to use generalized State Dependent Exploration (gSDE)
|
||||||
|
instead of action noise exploration (default: False)
|
||||||
|
:param sde_sample_freq: Sample a new noise matrix every n steps when using gSDE
|
||||||
|
Default: -1 (only sample at the beginning of the rollout)
|
||||||
|
:param target_kl: Limit the KL divergence between updates,
|
||||||
|
because the clipping is not enough to prevent large update
|
||||||
|
see issue #213 (cf https://github.com/hill-a/stable-baselines/issues/213)
|
||||||
|
By default, there is no limit on the kl div.
|
||||||
|
:param stats_window_size: Window size for the rollout logging, specifying the number of episodes to average
|
||||||
|
the reported success rate, mean episode length, and mean reward over
|
||||||
|
:param tensorboard_log: the log location for tensorboard (if None, no logging)
|
||||||
|
:param policy_kwargs: additional arguments to be passed to the policy on creation
|
||||||
|
:param verbose: Verbosity level: 0 for no output, 1 for info messages (such as device or wrappers used), 2 for
|
||||||
|
debug messages
|
||||||
|
:param seed: Seed for the pseudo random generators
|
||||||
|
:param device: Device (cpu, cuda, ...) on which the code should be run.
|
||||||
|
Setting it to auto, the code will be run on the GPU if possible.
|
||||||
|
:param _init_setup_model: Whether or not to build the network at the creation of the instance
|
||||||
|
"""
|
||||||
|
|
||||||
|
policy_aliases: Dict[str, Type[BasePolicy]] = {
|
||||||
|
"MlpPolicy": ActorCriticPolicy,
|
||||||
|
"CnnPolicy": ActorCriticCnnPolicy,
|
||||||
|
"MultiInputPolicy": MultiInputActorCriticPolicy,
|
||||||
|
}
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
policy: Union[str, Type[ActorCriticPolicy]],
|
||||||
|
env: Union[GymEnv, str],
|
||||||
|
learning_rate: Union[float, Schedule] = 3e-4,
|
||||||
|
n_steps: int = 2048,
|
||||||
|
batch_size: int = 64,
|
||||||
|
n_epochs: int = 10,
|
||||||
|
gamma: float = 0.99,
|
||||||
|
gae_lambda: float = 0.95,
|
||||||
|
clip_range: Union[float, Schedule] = 0.2,
|
||||||
|
clip_range_vf: Union[None, float, Schedule] = None,
|
||||||
|
normalize_advantage: bool = True,
|
||||||
|
ent_coef: float = 0.0,
|
||||||
|
vf_coef: float = 0.5,
|
||||||
|
max_grad_norm: float = 0.5,
|
||||||
|
use_sde: bool = False,
|
||||||
|
sde_sample_freq: int = -1,
|
||||||
|
target_kl: Optional[float] = None,
|
||||||
|
stats_window_size: int = 100,
|
||||||
|
tensorboard_log: Optional[str] = None,
|
||||||
|
policy_kwargs: Optional[Dict[str, Any]] = None,
|
||||||
|
verbose: int = 0,
|
||||||
|
seed: Optional[int] = None,
|
||||||
|
device: Union[th.device, str] = "auto",
|
||||||
|
_init_setup_model: bool = True,
|
||||||
|
):
|
||||||
|
super().__init__(
|
||||||
|
policy,
|
||||||
|
env,
|
||||||
|
learning_rate=learning_rate,
|
||||||
|
n_steps=n_steps,
|
||||||
|
gamma=gamma,
|
||||||
|
gae_lambda=gae_lambda,
|
||||||
|
ent_coef=ent_coef,
|
||||||
|
vf_coef=vf_coef,
|
||||||
|
max_grad_norm=max_grad_norm,
|
||||||
|
use_sde=use_sde,
|
||||||
|
sde_sample_freq=sde_sample_freq,
|
||||||
|
stats_window_size=stats_window_size,
|
||||||
|
tensorboard_log=tensorboard_log,
|
||||||
|
policy_kwargs=policy_kwargs,
|
||||||
|
verbose=verbose,
|
||||||
|
device=device,
|
||||||
|
seed=seed,
|
||||||
|
_init_setup_model=False,
|
||||||
|
supported_action_spaces=(
|
||||||
|
spaces.Box,
|
||||||
|
spaces.Discrete,
|
||||||
|
spaces.MultiDiscrete,
|
||||||
|
spaces.MultiBinary,
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
print('[i] Using sbBrix version of PPO')
|
||||||
|
|
||||||
|
# Sanity check, otherwise it will lead to noisy gradient and NaN
|
||||||
|
# because of the advantage normalization
|
||||||
|
if normalize_advantage:
|
||||||
|
assert (
|
||||||
|
batch_size > 1
|
||||||
|
), "`batch_size` must be greater than 1. See https://github.com/DLR-RM/stable-baselines3/issues/440"
|
||||||
|
|
||||||
|
if self.env is not None:
|
||||||
|
# Check that `n_steps * n_envs > 1` to avoid NaN
|
||||||
|
# when doing advantage normalization
|
||||||
|
buffer_size = self.env.num_envs * self.n_steps
|
||||||
|
assert buffer_size > 1 or (
|
||||||
|
not normalize_advantage
|
||||||
|
), f"`n_steps * n_envs` must be greater than 1. Currently n_steps={self.n_steps} and n_envs={self.env.num_envs}"
|
||||||
|
# Check that the rollout buffer size is a multiple of the mini-batch size
|
||||||
|
untruncated_batches = buffer_size // batch_size
|
||||||
|
if buffer_size % batch_size > 0:
|
||||||
|
warnings.warn(
|
||||||
|
f"You have specified a mini-batch size of {batch_size},"
|
||||||
|
f" but because the `RolloutBuffer` is of size `n_steps * n_envs = {buffer_size}`,"
|
||||||
|
f" after every {untruncated_batches} untruncated mini-batches,"
|
||||||
|
f" there will be a truncated mini-batch of size {buffer_size % batch_size}\n"
|
||||||
|
f"We recommend using a `batch_size` that is a factor of `n_steps * n_envs`.\n"
|
||||||
|
f"Info: (n_steps={self.n_steps} and n_envs={self.env.num_envs})"
|
||||||
|
)
|
||||||
|
self.batch_size = batch_size
|
||||||
|
self.n_epochs = n_epochs
|
||||||
|
self.clip_range = clip_range
|
||||||
|
self.clip_range_vf = clip_range_vf
|
||||||
|
self.normalize_advantage = normalize_advantage
|
||||||
|
self.target_kl = target_kl
|
||||||
|
|
||||||
|
if _init_setup_model:
|
||||||
|
self._setup_model()
|
||||||
|
|
||||||
|
def _setup_model(self) -> None:
|
||||||
|
super()._setup_model()
|
||||||
|
|
||||||
|
# Initialize schedules for policy/value clipping
|
||||||
|
self.clip_range = get_schedule_fn(self.clip_range)
|
||||||
|
if self.clip_range_vf is not None:
|
||||||
|
if isinstance(self.clip_range_vf, (float, int)):
|
||||||
|
assert self.clip_range_vf > 0, "`clip_range_vf` must be positive, " "pass `None` to deactivate vf clipping"
|
||||||
|
|
||||||
|
self.clip_range_vf = get_schedule_fn(self.clip_range_vf)
|
||||||
|
|
||||||
|
def train(self) -> None:
|
||||||
|
"""
|
||||||
|
Update policy using the currently gathered rollout buffer.
|
||||||
|
"""
|
||||||
|
# Switch to train mode (this affects batch norm / dropout)
|
||||||
|
self.policy.set_training_mode(True)
|
||||||
|
# Update optimizer learning rate
|
||||||
|
self._update_learning_rate(self.policy.optimizer)
|
||||||
|
# Compute current clip range
|
||||||
|
clip_range = self.clip_range(self._current_progress_remaining)
|
||||||
|
# Optional: clip range for the value function
|
||||||
|
if self.clip_range_vf is not None:
|
||||||
|
clip_range_vf = self.clip_range_vf(self._current_progress_remaining)
|
||||||
|
|
||||||
|
entropy_losses = []
|
||||||
|
pg_losses, value_losses = [], []
|
||||||
|
clip_fractions = []
|
||||||
|
|
||||||
|
continue_training = True
|
||||||
|
# train for n_epochs epochs
|
||||||
|
for epoch in range(self.n_epochs):
|
||||||
|
approx_kl_divs = []
|
||||||
|
# Do a complete pass on the rollout buffer
|
||||||
|
for rollout_data in self.rollout_buffer.get(self.batch_size):
|
||||||
|
actions = rollout_data.actions
|
||||||
|
if isinstance(self.action_space, spaces.Discrete):
|
||||||
|
# Convert discrete action from float to long
|
||||||
|
actions = rollout_data.actions.long().flatten()
|
||||||
|
|
||||||
|
# Re-sample the noise matrix because the log_std has changed
|
||||||
|
if self.use_sde:
|
||||||
|
self.policy.reset_noise(self.batch_size)
|
||||||
|
|
||||||
|
values, log_prob, entropy = self.policy.evaluate_actions(rollout_data.observations, actions)
|
||||||
|
values = values.flatten()
|
||||||
|
# Normalize advantage
|
||||||
|
advantages = rollout_data.advantages
|
||||||
|
# Normalization does not make sense if mini batchsize == 1, see GH issue #325
|
||||||
|
if self.normalize_advantage and len(advantages) > 1:
|
||||||
|
advantages = (advantages - advantages.mean()) / (advantages.std() + 1e-8)
|
||||||
|
|
||||||
|
# ratio between old and new policy, should be one at the first iteration
|
||||||
|
ratio = th.exp(log_prob - rollout_data.old_log_prob)
|
||||||
|
|
||||||
|
# clipped surrogate loss
|
||||||
|
policy_loss_1 = advantages * ratio
|
||||||
|
policy_loss_2 = advantages * th.clamp(ratio, 1 - clip_range, 1 + clip_range)
|
||||||
|
policy_loss = -th.min(policy_loss_1, policy_loss_2).mean()
|
||||||
|
|
||||||
|
# Logging
|
||||||
|
pg_losses.append(policy_loss.item())
|
||||||
|
clip_fraction = th.mean((th.abs(ratio - 1) > clip_range).float()).item()
|
||||||
|
clip_fractions.append(clip_fraction)
|
||||||
|
|
||||||
|
if self.clip_range_vf is None:
|
||||||
|
# No clipping
|
||||||
|
values_pred = values
|
||||||
|
else:
|
||||||
|
# Clip the difference between old and new value
|
||||||
|
# NOTE: this depends on the reward scaling
|
||||||
|
values_pred = rollout_data.old_values + th.clamp(
|
||||||
|
values - rollout_data.old_values, -clip_range_vf, clip_range_vf
|
||||||
|
)
|
||||||
|
# Value loss using the TD(gae_lambda) target
|
||||||
|
value_loss = F.mse_loss(rollout_data.returns, values_pred)
|
||||||
|
value_losses.append(value_loss.item())
|
||||||
|
|
||||||
|
# Entropy loss favor exploration
|
||||||
|
if entropy is None:
|
||||||
|
# Approximate entropy when no analytical form
|
||||||
|
entropy_loss = -th.mean(-log_prob)
|
||||||
|
else:
|
||||||
|
entropy_loss = -th.mean(entropy)
|
||||||
|
|
||||||
|
entropy_losses.append(entropy_loss.item())
|
||||||
|
|
||||||
|
loss = policy_loss + self.ent_coef * entropy_loss + self.vf_coef * value_loss
|
||||||
|
|
||||||
|
# Calculate approximate form of reverse KL Divergence for early stopping
|
||||||
|
# see issue #417: https://github.com/DLR-RM/stable-baselines3/issues/417
|
||||||
|
# and discussion in PR #419: https://github.com/DLR-RM/stable-baselines3/pull/419
|
||||||
|
# and Schulman blog: http://joschu.net/blog/kl-approx.html
|
||||||
|
with th.no_grad():
|
||||||
|
log_ratio = log_prob - rollout_data.old_log_prob
|
||||||
|
approx_kl_div = th.mean((th.exp(log_ratio) - 1) - log_ratio).cpu().numpy()
|
||||||
|
approx_kl_divs.append(approx_kl_div)
|
||||||
|
|
||||||
|
if self.target_kl is not None and approx_kl_div > 1.5 * self.target_kl:
|
||||||
|
continue_training = False
|
||||||
|
if self.verbose >= 1:
|
||||||
|
print(f"Early stopping at step {epoch} due to reaching max kl: {approx_kl_div:.2f}")
|
||||||
|
break
|
||||||
|
|
||||||
|
# Optimization step
|
||||||
|
self.policy.optimizer.zero_grad()
|
||||||
|
loss.backward()
|
||||||
|
# Clip grad norm
|
||||||
|
th.nn.utils.clip_grad_norm_(self.policy.parameters(), self.max_grad_norm)
|
||||||
|
self.policy.optimizer.step()
|
||||||
|
|
||||||
|
self._n_updates += 1
|
||||||
|
if not continue_training:
|
||||||
|
break
|
||||||
|
|
||||||
|
explained_var = explained_variance(self.rollout_buffer.values.flatten(), self.rollout_buffer.returns.flatten())
|
||||||
|
|
||||||
|
# Logs
|
||||||
|
self.logger.record("train/entropy_loss", np.mean(entropy_losses))
|
||||||
|
self.logger.record("train/policy_gradient_loss", np.mean(pg_losses))
|
||||||
|
self.logger.record("train/value_loss", np.mean(value_losses))
|
||||||
|
self.logger.record("train/approx_kl", np.mean(approx_kl_divs))
|
||||||
|
self.logger.record("train/clip_fraction", np.mean(clip_fractions))
|
||||||
|
self.logger.record("train/loss", loss.item())
|
||||||
|
self.logger.record("train/explained_variance", explained_var)
|
||||||
|
if hasattr(self.policy, "log_std"):
|
||||||
|
self.logger.record("train/std", th.exp(self.policy.log_std).mean().item())
|
||||||
|
|
||||||
|
self.logger.record("train/n_updates", self._n_updates, exclude="tensorboard")
|
||||||
|
self.logger.record("train/clip_range", clip_range)
|
||||||
|
if self.clip_range_vf is not None:
|
||||||
|
self.logger.record("train/clip_range_vf", clip_range_vf)
|
||||||
|
|
||||||
|
def learn(
|
||||||
|
self: SelfPPO,
|
||||||
|
total_timesteps: int,
|
||||||
|
callback: MaybeCallback = None,
|
||||||
|
log_interval: int = 1,
|
||||||
|
tb_log_name: str = "PPO",
|
||||||
|
reset_num_timesteps: bool = True,
|
||||||
|
progress_bar: bool = False,
|
||||||
|
) -> SelfPPO:
|
||||||
|
return super().learn(
|
||||||
|
total_timesteps=total_timesteps,
|
||||||
|
callback=callback,
|
||||||
|
log_interval=log_interval,
|
||||||
|
tb_log_name=tb_log_name,
|
||||||
|
reset_num_timesteps=reset_num_timesteps,
|
||||||
|
progress_bar=progress_bar,
|
||||||
|
)
|
||||||
|
|
1
sbBrix/sac/__init__.py
Normal file
1
sbBrix/sac/__init__.py
Normal file
@ -0,0 +1 @@
|
|||||||
|
from stable_baselines3.sac.sac import SAC
|
324
sbBrix/sac/sac.py
Normal file
324
sbBrix/sac/sac.py
Normal file
@ -0,0 +1,324 @@
|
|||||||
|
from typing import Any, Dict, List, Optional, Tuple, Type, TypeVar, Union
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import torch as th
|
||||||
|
from gym import spaces
|
||||||
|
from torch.nn import functional as F
|
||||||
|
|
||||||
|
from stable_baselines3.common.buffers import ReplayBuffer
|
||||||
|
from stable_baselines3.common.noise import ActionNoise
|
||||||
|
from stable_baselines3.common.off_policy_algorithm import OffPolicyAlgorithm
|
||||||
|
from stable_baselines3.common.policies import BasePolicy
|
||||||
|
from stable_baselines3.common.type_aliases import GymEnv, MaybeCallback, Schedule
|
||||||
|
from stable_baselines3.common.utils import get_parameters_by_name, polyak_update
|
||||||
|
from stable_baselines3.sac.policies import CnnPolicy, MlpPolicy, MultiInputPolicy, SACPolicy
|
||||||
|
|
||||||
|
SelfSAC = TypeVar("SelfSAC", bound="SAC")
|
||||||
|
|
||||||
|
|
||||||
|
class SAC(OffPolicyAlgorithm):
|
||||||
|
"""
|
||||||
|
Soft Actor-Critic (SAC)
|
||||||
|
Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor,
|
||||||
|
This implementation borrows code from original implementation (https://github.com/haarnoja/sac)
|
||||||
|
from OpenAI Spinning Up (https://github.com/openai/spinningup), from the softlearning repo
|
||||||
|
(https://github.com/rail-berkeley/softlearning/)
|
||||||
|
and from Stable Baselines (https://github.com/hill-a/stable-baselines)
|
||||||
|
Paper: https://arxiv.org/abs/1801.01290
|
||||||
|
Introduction to SAC: https://spinningup.openai.com/en/latest/algorithms/sac.html
|
||||||
|
|
||||||
|
Note: we use double q target and not value target as discussed
|
||||||
|
in https://github.com/hill-a/stable-baselines/issues/270
|
||||||
|
|
||||||
|
:param policy: The policy model to use (MlpPolicy, CnnPolicy, ...)
|
||||||
|
:param env: The environment to learn from (if registered in Gym, can be str)
|
||||||
|
:param learning_rate: learning rate for adam optimizer,
|
||||||
|
the same learning rate will be used for all networks (Q-Values, Actor and Value function)
|
||||||
|
it can be a function of the current progress remaining (from 1 to 0)
|
||||||
|
:param buffer_size: size of the replay buffer
|
||||||
|
:param learning_starts: how many steps of the model to collect transitions for before learning starts
|
||||||
|
:param batch_size: Minibatch size for each gradient update
|
||||||
|
:param tau: the soft update coefficient ("Polyak update", between 0 and 1)
|
||||||
|
:param gamma: the discount factor
|
||||||
|
:param train_freq: Update the model every ``train_freq`` steps. Alternatively pass a tuple of frequency and unit
|
||||||
|
like ``(5, "step")`` or ``(2, "episode")``.
|
||||||
|
:param gradient_steps: How many gradient steps to do after each rollout (see ``train_freq``)
|
||||||
|
Set to ``-1`` means to do as many gradient steps as steps done in the environment
|
||||||
|
during the rollout.
|
||||||
|
:param action_noise: the action noise type (None by default), this can help
|
||||||
|
for hard exploration problem. Cf common.noise for the different action noise type.
|
||||||
|
:param replay_buffer_class: Replay buffer class to use (for instance ``HerReplayBuffer``).
|
||||||
|
If ``None``, it will be automatically selected.
|
||||||
|
:param replay_buffer_kwargs: Keyword arguments to pass to the replay buffer on creation.
|
||||||
|
:param optimize_memory_usage: Enable a memory efficient variant of the replay buffer
|
||||||
|
at a cost of more complexity.
|
||||||
|
See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195
|
||||||
|
:param ent_coef: Entropy regularization coefficient. (Equivalent to
|
||||||
|
inverse of reward scale in the original SAC paper.) Controlling exploration/exploitation trade-off.
|
||||||
|
Set it to 'auto' to learn it automatically (and 'auto_0.1' for using 0.1 as initial value)
|
||||||
|
:param target_update_interval: update the target network every ``target_network_update_freq``
|
||||||
|
gradient steps.
|
||||||
|
:param target_entropy: target entropy when learning ``ent_coef`` (``ent_coef = 'auto'``)
|
||||||
|
:param use_sde: Whether to use generalized State Dependent Exploration (gSDE)
|
||||||
|
instead of action noise exploration (default: False)
|
||||||
|
:param sde_sample_freq: Sample a new noise matrix every n steps when using gSDE
|
||||||
|
Default: -1 (only sample at the beginning of the rollout)
|
||||||
|
:param use_sde_at_warmup: Whether to use gSDE instead of uniform sampling
|
||||||
|
during the warm up phase (before learning starts)
|
||||||
|
:param stats_window_size: Window size for the rollout logging, specifying the number of episodes to average
|
||||||
|
the reported success rate, mean episode length, and mean reward over
|
||||||
|
:param tensorboard_log: the log location for tensorboard (if None, no logging)
|
||||||
|
:param policy_kwargs: additional arguments to be passed to the policy on creation
|
||||||
|
:param verbose: Verbosity level: 0 for no output, 1 for info messages (such as device or wrappers used), 2 for
|
||||||
|
debug messages
|
||||||
|
:param seed: Seed for the pseudo random generators
|
||||||
|
:param device: Device (cpu, cuda, ...) on which the code should be run.
|
||||||
|
Setting it to auto, the code will be run on the GPU if possible.
|
||||||
|
:param _init_setup_model: Whether or not to build the network at the creation of the instance
|
||||||
|
"""
|
||||||
|
|
||||||
|
policy_aliases: Dict[str, Type[BasePolicy]] = {
|
||||||
|
"MlpPolicy": MlpPolicy,
|
||||||
|
"CnnPolicy": CnnPolicy,
|
||||||
|
"MultiInputPolicy": MultiInputPolicy,
|
||||||
|
}
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
policy: Union[str, Type[SACPolicy]],
|
||||||
|
env: Union[GymEnv, str],
|
||||||
|
learning_rate: Union[float, Schedule] = 3e-4,
|
||||||
|
buffer_size: int = 1_000_000, # 1e6
|
||||||
|
learning_starts: int = 100,
|
||||||
|
batch_size: int = 256,
|
||||||
|
tau: float = 0.005,
|
||||||
|
gamma: float = 0.99,
|
||||||
|
train_freq: Union[int, Tuple[int, str]] = 1,
|
||||||
|
gradient_steps: int = 1,
|
||||||
|
action_noise: Optional[ActionNoise] = None,
|
||||||
|
replay_buffer_class: Optional[Type[ReplayBuffer]] = None,
|
||||||
|
replay_buffer_kwargs: Optional[Dict[str, Any]] = None,
|
||||||
|
optimize_memory_usage: bool = False,
|
||||||
|
ent_coef: Union[str, float] = "auto",
|
||||||
|
target_update_interval: int = 1,
|
||||||
|
target_entropy: Union[str, float] = "auto",
|
||||||
|
use_sde: bool = False,
|
||||||
|
sde_sample_freq: int = -1,
|
||||||
|
use_sde_at_warmup: bool = False,
|
||||||
|
stats_window_size: int = 100,
|
||||||
|
tensorboard_log: Optional[str] = None,
|
||||||
|
policy_kwargs: Optional[Dict[str, Any]] = None,
|
||||||
|
verbose: int = 0,
|
||||||
|
seed: Optional[int] = None,
|
||||||
|
device: Union[th.device, str] = "auto",
|
||||||
|
_init_setup_model: bool = True,
|
||||||
|
):
|
||||||
|
super().__init__(
|
||||||
|
policy,
|
||||||
|
env,
|
||||||
|
learning_rate,
|
||||||
|
buffer_size,
|
||||||
|
learning_starts,
|
||||||
|
batch_size,
|
||||||
|
tau,
|
||||||
|
gamma,
|
||||||
|
train_freq,
|
||||||
|
gradient_steps,
|
||||||
|
action_noise,
|
||||||
|
replay_buffer_class=replay_buffer_class,
|
||||||
|
replay_buffer_kwargs=replay_buffer_kwargs,
|
||||||
|
policy_kwargs=policy_kwargs,
|
||||||
|
stats_window_size=stats_window_size,
|
||||||
|
tensorboard_log=tensorboard_log,
|
||||||
|
verbose=verbose,
|
||||||
|
device=device,
|
||||||
|
seed=seed,
|
||||||
|
use_sde=use_sde,
|
||||||
|
sde_sample_freq=sde_sample_freq,
|
||||||
|
use_sde_at_warmup=use_sde_at_warmup,
|
||||||
|
optimize_memory_usage=optimize_memory_usage,
|
||||||
|
supported_action_spaces=(spaces.Box),
|
||||||
|
support_multi_env=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
print('[i] Using sbBrix version of SAC')
|
||||||
|
|
||||||
|
self.target_entropy = target_entropy
|
||||||
|
self.log_ent_coef = None # type: Optional[th.Tensor]
|
||||||
|
# Entropy coefficient / Entropy temperature
|
||||||
|
# Inverse of the reward scale
|
||||||
|
self.ent_coef = ent_coef
|
||||||
|
self.target_update_interval = target_update_interval
|
||||||
|
self.ent_coef_optimizer = None
|
||||||
|
|
||||||
|
if _init_setup_model:
|
||||||
|
self._setup_model()
|
||||||
|
|
||||||
|
def _setup_model(self) -> None:
|
||||||
|
super()._setup_model()
|
||||||
|
self._create_aliases()
|
||||||
|
# Running mean and running var
|
||||||
|
self.batch_norm_stats = get_parameters_by_name(self.critic, ["running_"])
|
||||||
|
self.batch_norm_stats_target = get_parameters_by_name(self.critic_target, ["running_"])
|
||||||
|
# Target entropy is used when learning the entropy coefficient
|
||||||
|
if self.target_entropy == "auto":
|
||||||
|
# automatically set target entropy if needed
|
||||||
|
self.target_entropy = -np.prod(self.env.action_space.shape).astype(np.float32)
|
||||||
|
else:
|
||||||
|
# Force conversion
|
||||||
|
# this will also throw an error for unexpected string
|
||||||
|
self.target_entropy = float(self.target_entropy)
|
||||||
|
|
||||||
|
# The entropy coefficient or entropy can be learned automatically
|
||||||
|
# see Automating Entropy Adjustment for Maximum Entropy RL section
|
||||||
|
# of https://arxiv.org/abs/1812.05905
|
||||||
|
if isinstance(self.ent_coef, str) and self.ent_coef.startswith("auto"):
|
||||||
|
# Default initial value of ent_coef when learned
|
||||||
|
init_value = 1.0
|
||||||
|
if "_" in self.ent_coef:
|
||||||
|
init_value = float(self.ent_coef.split("_")[1])
|
||||||
|
assert init_value > 0.0, "The initial value of ent_coef must be greater than 0"
|
||||||
|
|
||||||
|
# Note: we optimize the log of the entropy coeff which is slightly different from the paper
|
||||||
|
# as discussed in https://github.com/rail-berkeley/softlearning/issues/37
|
||||||
|
self.log_ent_coef = th.log(th.ones(1, device=self.device) * init_value).requires_grad_(True)
|
||||||
|
self.ent_coef_optimizer = th.optim.Adam([self.log_ent_coef], lr=self.lr_schedule(1))
|
||||||
|
else:
|
||||||
|
# Force conversion to float
|
||||||
|
# this will throw an error if a malformed string (different from 'auto')
|
||||||
|
# is passed
|
||||||
|
self.ent_coef_tensor = th.tensor(float(self.ent_coef), device=self.device)
|
||||||
|
|
||||||
|
def _create_aliases(self) -> None:
|
||||||
|
self.actor = self.policy.actor
|
||||||
|
self.critic = self.policy.critic
|
||||||
|
self.critic_target = self.policy.critic_target
|
||||||
|
|
||||||
|
def train(self, gradient_steps: int, batch_size: int = 64) -> None:
|
||||||
|
# Switch to train mode (this affects batch norm / dropout)
|
||||||
|
self.policy.set_training_mode(True)
|
||||||
|
# Update optimizers learning rate
|
||||||
|
optimizers = [self.actor.optimizer, self.critic.optimizer]
|
||||||
|
if self.ent_coef_optimizer is not None:
|
||||||
|
optimizers += [self.ent_coef_optimizer]
|
||||||
|
|
||||||
|
# Update learning rate according to lr schedule
|
||||||
|
self._update_learning_rate(optimizers)
|
||||||
|
|
||||||
|
ent_coef_losses, ent_coefs = [], []
|
||||||
|
actor_losses, critic_losses = [], []
|
||||||
|
|
||||||
|
for gradient_step in range(gradient_steps):
|
||||||
|
# Sample replay buffer
|
||||||
|
replay_data = self.replay_buffer.sample(batch_size, env=self._vec_normalize_env)
|
||||||
|
|
||||||
|
# We need to sample because `log_std` may have changed between two gradient steps
|
||||||
|
if self.use_sde:
|
||||||
|
self.actor.reset_noise()
|
||||||
|
|
||||||
|
# Action by the current actor for the sampled state
|
||||||
|
actions_pi, log_prob = self.actor.action_log_prob(replay_data.observations)
|
||||||
|
log_prob = log_prob.reshape(-1, 1)
|
||||||
|
|
||||||
|
ent_coef_loss = None
|
||||||
|
if self.ent_coef_optimizer is not None:
|
||||||
|
# Important: detach the variable from the graph
|
||||||
|
# so we don't change it with other losses
|
||||||
|
# see https://github.com/rail-berkeley/softlearning/issues/60
|
||||||
|
ent_coef = th.exp(self.log_ent_coef.detach())
|
||||||
|
ent_coef_loss = -(self.log_ent_coef * (log_prob + self.target_entropy).detach()).mean()
|
||||||
|
ent_coef_losses.append(ent_coef_loss.item())
|
||||||
|
else:
|
||||||
|
ent_coef = self.ent_coef_tensor
|
||||||
|
|
||||||
|
ent_coefs.append(ent_coef.item())
|
||||||
|
|
||||||
|
# Optimize entropy coefficient, also called
|
||||||
|
# entropy temperature or alpha in the paper
|
||||||
|
if ent_coef_loss is not None:
|
||||||
|
self.ent_coef_optimizer.zero_grad()
|
||||||
|
ent_coef_loss.backward()
|
||||||
|
self.ent_coef_optimizer.step()
|
||||||
|
|
||||||
|
with th.no_grad():
|
||||||
|
# Select action according to policy
|
||||||
|
next_actions, next_log_prob = self.actor.action_log_prob(replay_data.next_observations)
|
||||||
|
# Compute the next Q values: min over all critics targets
|
||||||
|
next_q_values = th.cat(self.critic_target(replay_data.next_observations, next_actions), dim=1)
|
||||||
|
next_q_values, _ = th.min(next_q_values, dim=1, keepdim=True)
|
||||||
|
# add entropy term
|
||||||
|
next_q_values = next_q_values - ent_coef * next_log_prob.reshape(-1, 1)
|
||||||
|
# td error + entropy term
|
||||||
|
target_q_values = replay_data.rewards + (1 - replay_data.dones) * self.gamma * next_q_values
|
||||||
|
|
||||||
|
# Get current Q-values estimates for each critic network
|
||||||
|
# using action from the replay buffer
|
||||||
|
current_q_values = self.critic(replay_data.observations, replay_data.actions)
|
||||||
|
|
||||||
|
# Compute critic loss
|
||||||
|
critic_loss = 0.5 * sum(F.mse_loss(current_q, target_q_values) for current_q in current_q_values)
|
||||||
|
critic_losses.append(critic_loss.item())
|
||||||
|
|
||||||
|
# Optimize the critic
|
||||||
|
self.critic.optimizer.zero_grad()
|
||||||
|
critic_loss.backward()
|
||||||
|
self.critic.optimizer.step()
|
||||||
|
|
||||||
|
# Compute actor loss
|
||||||
|
# Alternative: actor_loss = th.mean(log_prob - qf1_pi)
|
||||||
|
# Min over all critic networks
|
||||||
|
q_values_pi = th.cat(self.critic(replay_data.observations, actions_pi), dim=1)
|
||||||
|
min_qf_pi, _ = th.min(q_values_pi, dim=1, keepdim=True)
|
||||||
|
actor_loss = (ent_coef * log_prob - min_qf_pi).mean()
|
||||||
|
actor_losses.append(actor_loss.item())
|
||||||
|
|
||||||
|
# Optimize the actor
|
||||||
|
self.actor.optimizer.zero_grad()
|
||||||
|
actor_loss.backward()
|
||||||
|
self.actor.optimizer.step()
|
||||||
|
|
||||||
|
# Update target networks
|
||||||
|
if gradient_step % self.target_update_interval == 0:
|
||||||
|
polyak_update(self.critic.parameters(), self.critic_target.parameters(), self.tau)
|
||||||
|
# Copy running stats, see GH issue #996
|
||||||
|
polyak_update(self.batch_norm_stats, self.batch_norm_stats_target, 1.0)
|
||||||
|
|
||||||
|
self._n_updates += gradient_steps
|
||||||
|
|
||||||
|
self.logger.record("train/n_updates", self._n_updates, exclude="tensorboard")
|
||||||
|
self.logger.record("train/ent_coef", np.mean(ent_coefs))
|
||||||
|
self.logger.record("train/actor_loss", np.mean(actor_losses))
|
||||||
|
self.logger.record("train/critic_loss", np.mean(critic_losses))
|
||||||
|
if len(ent_coef_losses) > 0:
|
||||||
|
self.logger.record("train/ent_coef_loss", np.mean(ent_coef_losses))
|
||||||
|
|
||||||
|
def learn(
|
||||||
|
self: SelfSAC,
|
||||||
|
total_timesteps: int,
|
||||||
|
callback: MaybeCallback = None,
|
||||||
|
log_interval: int = 4,
|
||||||
|
tb_log_name: str = "SAC",
|
||||||
|
reset_num_timesteps: bool = True,
|
||||||
|
progress_bar: bool = False,
|
||||||
|
) -> SelfSAC:
|
||||||
|
return super().learn(
|
||||||
|
total_timesteps=total_timesteps,
|
||||||
|
callback=callback,
|
||||||
|
log_interval=log_interval,
|
||||||
|
tb_log_name=tb_log_name,
|
||||||
|
reset_num_timesteps=reset_num_timesteps,
|
||||||
|
progress_bar=progress_bar,
|
||||||
|
)
|
||||||
|
|
||||||
|
def _excluded_save_params(self) -> List[str]:
|
||||||
|
return super()._excluded_save_params() + ["actor", "critic", "critic_target"] # noqa: RUF005
|
||||||
|
|
||||||
|
def _get_torch_save_params(self) -> Tuple[List[str], List[str]]:
|
||||||
|
state_dicts = ["policy", "actor.optimizer", "critic.optimizer"]
|
||||||
|
if self.ent_coef_optimizer is not None:
|
||||||
|
saved_pytorch_variables = ["log_ent_coef"]
|
||||||
|
state_dicts.append("ent_coef_optimizer")
|
||||||
|
else:
|
||||||
|
saved_pytorch_variables = ["ent_coef_tensor"]
|
||||||
|
return state_dicts, saved_pytorch_variables
|
||||||
|
|
12
setup.py
Normal file
12
setup.py
Normal file
@ -0,0 +1,12 @@
|
|||||||
|
from setuptools import setup, find_packages
|
||||||
|
|
||||||
|
setup(
|
||||||
|
name='sbBrix',
|
||||||
|
version='1.0.0',
|
||||||
|
# url='https://github.com/mypackage.git',
|
||||||
|
# author='Author Name',
|
||||||
|
# author_email='author@gmail.com',
|
||||||
|
# description='Description of my package',
|
||||||
|
packages=['.'],
|
||||||
|
install_requires=['gym', 'stable_baselines3==1.8.0'],
|
||||||
|
)
|
Loading…
Reference in New Issue
Block a user