metastable-baselines2/metastable_baselines2/ppo/ppo.py

326 lines
15 KiB
Python

import warnings
from typing import Any, ClassVar, Dict, Optional, Type, TypeVar, Union
import numpy as np
import torch as th
from gymnasium import spaces
from torch.nn import functional as F
from stable_baselines3.common.buffers import RolloutBuffer
from ..common.on_policy_algorithm import BetterOnPolicyAlgorithm
from ..common.policies import ActorCriticPolicy, BasePolicy
from stable_baselines3.common.type_aliases import GymEnv, MaybeCallback, Schedule
from stable_baselines3.common.utils import explained_variance, get_schedule_fn
SelfPPO = TypeVar("SelfPPO", bound="PPO")
class PPO(BetterOnPolicyAlgorithm):
"""
Proximal Policy Optimization algorithm (PPO) (clip version)
Paper: https://arxiv.org/abs/1707.06347
Code: This implementation borrows code from OpenAI Spinning Up (https://github.com/openai/spinningup/)
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail and
Stable Baselines (PPO2 from https://github.com/hill-a/stable-baselines)
Introduction to PPO: https://spinningup.openai.com/en/latest/algorithms/ppo.html
:param policy: The policy model to use (MlpPolicy, CnnPolicy, ...)
:param env: The environment to learn from (if registered in Gym, can be str)
:param learning_rate: The learning rate, it can be a function
of the current progress remaining (from 1 to 0)
:param n_steps: The number of steps to run for each environment per update
(i.e. rollout buffer size is n_steps * n_envs where n_envs is number of environment copies running in parallel)
NOTE: n_steps * n_envs must be greater than 1 (because of the advantage normalization)
See https://github.com/pytorch/pytorch/issues/29372
:param batch_size: Minibatch size
:param n_epochs: Number of epoch when optimizing the surrogate loss
:param gamma: Discount factor
:param gae_lambda: Factor for trade-off of bias vs variance for Generalized Advantage Estimator
:param clip_range: Clipping parameter, it can be a function of the current progress
remaining (from 1 to 0).
:param clip_range_vf: Clipping parameter for the value function,
it can be a function of the current progress remaining (from 1 to 0).
This is a parameter specific to the OpenAI implementation. If None is passed (default),
no clipping will be done on the value function.
IMPORTANT: this clipping depends on the reward scaling.
:param normalize_advantage: Whether to normalize or not the advantage
:param ent_coef: Entropy coefficient for the loss calculation
:param vf_coef: Value function coefficient for the loss calculation
:param max_grad_norm: The maximum value for the gradient clipping
:param use_sde: Whether to use generalized State Dependent Exploration (gSDE)
instead of action noise exploration (default: False)
:param sde_sample_freq: Sample a new noise matrix every n steps when using gSDE
Default: -1 (only sample at the beginning of the rollout)
:param use_pca: Wether to use Prior Conditioned Annealing
:param rollout_buffer_class: Rollout buffer class to use. If ``None``, it will be automatically selected.
:param rollout_buffer_kwargs: Keyword arguments to pass to the rollout buffer on creation
:param target_kl: Limit the KL divergence between updates,
because the clipping is not enough to prevent large update
see issue #213 (cf https://github.com/hill-a/stable-baselines/issues/213)
By default, there is no limit on the kl div.
:param stats_window_size: Window size for the rollout logging, specifying the number of episodes to average
the reported success rate, mean episode length, and mean reward over
:param tensorboard_log: the log location for tensorboard (if None, no logging)
:param policy_kwargs: additional arguments to be passed to the policy on creation
:param verbose: Verbosity level: 0 for no output, 1 for info messages (such as device or wrappers used), 2 for
debug messages
:param seed: Seed for the pseudo random generators
:param device: Device (cpu, cuda, ...) on which the code should be run.
Setting it to auto, the code will be run on the GPU if possible.
:param _init_setup_model: Whether or not to build the network at the creation of the instance
"""
policy_aliases: ClassVar[Dict[str, Type[BasePolicy]]] = {
"MlpPolicy": ActorCriticPolicy
}
def __init__(
self,
policy: Union[str, Type[ActorCriticPolicy]],
env: Union[GymEnv, str],
learning_rate: Union[float, Schedule] = 3e-4,
n_steps: int = 2048,
batch_size: int = 64,
n_epochs: int = 10,
gamma: float = 0.99,
gae_lambda: float = 0.95,
clip_range: Union[float, Schedule] = 0.2,
clip_range_vf: Union[None, float, Schedule] = None,
normalize_advantage: bool = True,
ent_coef: float = 0.0,
vf_coef: float = 0.5,
max_grad_norm: float = 0.5,
use_sde: bool = False,
sde_sample_freq: int = -1,
use_pca: bool = False,
rollout_buffer_class: Optional[Type[RolloutBuffer]] = None,
rollout_buffer_kwargs: Optional[Dict[str, Any]] = None,
target_kl: Optional[float] = None,
stats_window_size: int = 100,
tensorboard_log: Optional[str] = None,
policy_kwargs: Optional[Dict[str, Any]] = None,
verbose: int = 0,
seed: Optional[int] = None,
device: Union[th.device, str] = "auto",
_init_setup_model: bool = True,
):
super().__init__(
policy,
env,
learning_rate=learning_rate,
n_steps=n_steps,
gamma=gamma,
gae_lambda=gae_lambda,
ent_coef=ent_coef,
vf_coef=vf_coef,
max_grad_norm=max_grad_norm,
use_sde=use_sde,
sde_sample_freq=sde_sample_freq,
use_pca=use_pca,
rollout_buffer_class=rollout_buffer_class,
rollout_buffer_kwargs=rollout_buffer_kwargs,
stats_window_size=stats_window_size,
tensorboard_log=tensorboard_log,
policy_kwargs=policy_kwargs,
verbose=verbose,
device=device,
seed=seed,
_init_setup_model=False,
supported_action_spaces=(
spaces.Box,
spaces.Discrete,
spaces.MultiDiscrete,
spaces.MultiBinary,
),
)
print('[i] Using metastable version of PPO')
# Sanity check, otherwise it will lead to noisy gradient and NaN
# because of the advantage normalization
if normalize_advantage:
assert (
batch_size > 1
), "`batch_size` must be greater than 1. See https://github.com/DLR-RM/stable-baselines3/issues/440"
if self.env is not None:
# Check that `n_steps * n_envs > 1` to avoid NaN
# when doing advantage normalization
buffer_size = self.env.num_envs * self.n_steps
assert buffer_size > 1 or (
not normalize_advantage
), f"`n_steps * n_envs` must be greater than 1. Currently n_steps={self.n_steps} and n_envs={self.env.num_envs}"
# Check that the rollout buffer size is a multiple of the mini-batch size
untruncated_batches = buffer_size // batch_size
if buffer_size % batch_size > 0:
warnings.warn(
f"You have specified a mini-batch size of {batch_size},"
f" but because the `RolloutBuffer` is of size `n_steps * n_envs = {buffer_size}`,"
f" after every {untruncated_batches} untruncated mini-batches,"
f" there will be a truncated mini-batch of size {buffer_size % batch_size}\n"
f"We recommend using a `batch_size` that is a factor of `n_steps * n_envs`.\n"
f"Info: (n_steps={self.n_steps} and n_envs={self.env.num_envs})"
)
self.batch_size = batch_size
self.n_epochs = n_epochs
self.clip_range = clip_range
self.clip_range_vf = clip_range_vf
self.normalize_advantage = normalize_advantage
self.target_kl = target_kl
if _init_setup_model:
self._setup_model()
def _setup_model(self) -> None:
super()._setup_model()
# Initialize schedules for policy/value clipping
self.clip_range = get_schedule_fn(self.clip_range)
if self.clip_range_vf is not None:
if isinstance(self.clip_range_vf, (float, int)):
assert self.clip_range_vf > 0, "`clip_range_vf` must be positive, " "pass `None` to deactivate vf clipping"
self.clip_range_vf = get_schedule_fn(self.clip_range_vf)
def train(self) -> None:
"""
Update policy using the currently gathered rollout buffer.
"""
# Switch to train mode (this affects batch norm / dropout)
self.policy.set_training_mode(True)
# Update optimizer learning rate
self._update_learning_rate(self.policy.optimizer)
# Compute current clip range
clip_range = self.clip_range(self._current_progress_remaining)
# Optional: clip range for the value function
if self.clip_range_vf is not None:
clip_range_vf = self.clip_range_vf(self._current_progress_remaining)
entropy_losses = []
pg_losses, value_losses = [], []
clip_fractions = []
continue_training = True
# train for n_epochs epochs
for epoch in range(self.n_epochs):
approx_kl_divs = []
# Do a complete pass on the rollout buffer
for rollout_data in self.rollout_buffer.get(self.batch_size):
actions = rollout_data.actions
if isinstance(self.action_space, spaces.Discrete):
# Convert discrete action from float to long
actions = rollout_data.actions.long().flatten()
# Re-sample the noise matrix because the log_std has changed
if self.use_sde or self.use_pca:
self.policy.reset_noise(self.batch_size)
values, log_prob, entropy = self.policy.evaluate_actions(rollout_data.observations, actions)
values = values.flatten()
# Normalize advantage
advantages = rollout_data.advantages
# Normalization does not make sense if mini batchsize == 1, see GH issue #325
if self.normalize_advantage and len(advantages) > 1:
advantages = (advantages - advantages.mean()) / (advantages.std() + 1e-8)
# ratio between old and new policy, should be one at the first iteration
ratio = th.exp(log_prob - rollout_data.old_log_prob)
# clipped surrogate loss
policy_loss_1 = advantages * ratio
policy_loss_2 = advantages * th.clamp(ratio, 1 - clip_range, 1 + clip_range)
policy_loss = -th.min(policy_loss_1, policy_loss_2).mean()
# Logging
pg_losses.append(policy_loss.item())
clip_fraction = th.mean((th.abs(ratio - 1) > clip_range).float()).item()
clip_fractions.append(clip_fraction)
if self.clip_range_vf is None:
# No clipping
values_pred = values
else:
# Clip the difference between old and new value
# NOTE: this depends on the reward scaling
values_pred = rollout_data.old_values + th.clamp(
values - rollout_data.old_values, -clip_range_vf, clip_range_vf
)
# Value loss using the TD(gae_lambda) target
value_loss = F.mse_loss(rollout_data.returns, values_pred)
value_losses.append(value_loss.item())
# Entropy loss favor exploration
if entropy is None:
# Approximate entropy when no analytical form
entropy_loss = -th.mean(-log_prob)
else:
entropy_loss = -th.mean(entropy)
entropy_losses.append(entropy_loss.item())
loss = policy_loss + self.ent_coef * entropy_loss + self.vf_coef * value_loss
# Calculate approximate form of reverse KL Divergence for early stopping
# see issue #417: https://github.com/DLR-RM/stable-baselines3/issues/417
# and discussion in PR #419: https://github.com/DLR-RM/stable-baselines3/pull/419
# and Schulman blog: http://joschu.net/blog/kl-approx.html
with th.no_grad():
log_ratio = log_prob - rollout_data.old_log_prob
approx_kl_div = th.mean((th.exp(log_ratio) - 1) - log_ratio).cpu().numpy()
approx_kl_divs.append(approx_kl_div)
if self.target_kl is not None and approx_kl_div > 1.5 * self.target_kl:
continue_training = False
if self.verbose >= 1:
print(f"Early stopping at step {epoch} due to reaching max kl: {approx_kl_div:.2f}")
break
# Optimization step
self.policy.optimizer.zero_grad()
loss.backward()
# Clip grad norm
th.nn.utils.clip_grad_norm_(self.policy.parameters(), self.max_grad_norm)
self.policy.optimizer.step()
self._n_updates += 1
if not continue_training:
break
explained_var = explained_variance(self.rollout_buffer.values.flatten(), self.rollout_buffer.returns.flatten())
# Logs
self.logger.record("train/entropy_loss", np.mean(entropy_losses))
self.logger.record("train/policy_gradient_loss", np.mean(pg_losses))
self.logger.record("train/value_loss", np.mean(value_losses))
self.logger.record("train/approx_kl", np.mean(approx_kl_divs))
self.logger.record("train/clip_fraction", np.mean(clip_fractions))
self.logger.record("train/loss", loss.item())
self.logger.record("train/explained_variance", explained_var)
if hasattr(self.policy, "log_std"):
self.logger.record("train/std", th.exp(self.policy.log_std).mean().item())
self.logger.record("train/n_updates", self._n_updates, exclude="tensorboard")
self.logger.record("train/clip_range", clip_range)
if self.clip_range_vf is not None:
self.logger.record("train/clip_range_vf", clip_range_vf)
def learn(
self: SelfPPO,
total_timesteps: int,
callback: MaybeCallback = None,
log_interval: int = 1,
tb_log_name: str = "PPO",
reset_num_timesteps: bool = True,
progress_bar: bool = False,
) -> SelfPPO:
return super().learn(
total_timesteps=total_timesteps,
callback=callback,
log_interval=log_interval,
tb_log_name=tb_log_name,
reset_num_timesteps=reset_num_timesteps,
progress_bar=progress_bar,
)