metastable-projections-public/metastable_projections/projections/frob_projection_layer.py

131 lines
4.6 KiB
Python

import torch as th
from typing import Tuple
from .base_projection_layer import BaseProjectionLayer, mean_projection
from ..misc.norm import mahalanobis, frob_sq
from ..misc.distTools import get_mean_and_chol, get_cov, new_dist_like
class FrobeniusProjectionLayer(BaseProjectionLayer):
def _trust_region_projection(self, p, q, eps: th.Tensor, eps_cov: th.Tensor, **kwargs):
"""
Stolen from Fabian's Code (Public Version)
Runs Frobenius projection layer and constructs cholesky of covariance
Args:
policy: policy instance
p: current distribution
q: old distribution
eps: (modified) kl bound/ kl bound for mean part
eps_cov: (modified) kl bound for cov part
beta: (modified) entropy bound
**kwargs:
Returns: mean, cov cholesky
"""
mean, chol = get_mean_and_chol(p, expand=True)
old_mean, old_chol = get_mean_and_chol(q, expand=True)
batch_shape = mean.shape[:-1]
####################################################################################################################
# precompute mean and cov part of frob projection, which are used for the projection.
mean_part, cov_part, cov, cov_old = gaussian_frobenius(
p, q, self.scale_prec, True)
################################################################################################################
# mean projection maha/euclidean
proj_mean = mean_projection(mean, old_mean, mean_part, eps)
################################################################################################################
# cov projection frobenius
cov_mask = cov_part > eps_cov
if cov_mask.any():
eta = th.ones(batch_shape, dtype=chol.dtype, device=chol.device)
eta[cov_mask] = th.sqrt(cov_part[cov_mask] / eps_cov) - 1.
eta = th.max(-eta, eta)
new_cov = (cov + th.einsum('i,ijk->ijk', eta, cov_old)
) / (1. + eta + 1e-16)[..., None, None]
proj_chol = th.where(
cov_mask[..., None, None], th.linalg.cholesky(new_cov), chol)
else:
proj_chol = chol
proj_p = new_dist_like(p, proj_mean, proj_chol)
return proj_p
def trust_region_value(self, p, q):
"""
Stolen from Fabian's Code (Public Version)
Computes the Frobenius metric between two Gaussian distributions p and q.
Args:
policy: policy instance
p: current distribution
q: old distribution
Returns:
mean and covariance part of Frobenius metric
"""
return gaussian_frobenius(p, q, self.scale_prec)
def get_trust_region_loss(self, p, proj_p):
"""
Stolen from Fabian's Code (Public Version)
"""
mean_diff, _ = self.trust_region_value(p, proj_p)
if False and policy.contextual_std:
# Compute MSE here, because we found the Frobenius norm tends to generate values that explode for the cov
p_mean, proj_p_mean = p.mean, proj_p.mean
cov_diff = (p_mean - proj_p_mean).pow(2).sum([-1, -2])
delta_loss = (mean_diff + cov_diff).mean()
else:
delta_loss = mean_diff.mean()
return delta_loss * self.trust_region_coeff
def gaussian_frobenius(p, q, scale_prec: bool = False, return_cov: bool = False):
"""
Stolen from Fabian' Code (Public Version)
Compute (p - q_values) (L_oL_o^T)^-1 (p - 1)^T + |LL^T - L_oL_o^T|_F^2 with p,q_values ~ N(y, LL^T)
Args:
policy: current policy
p: mean and chol of gaussian p
q: mean and chol of gaussian q_values
return_cov: return cov matrices for further computations
scale_prec: scale objective with precision matrix
Returns: mahalanobis distance, squared frobenius norm
"""
mean, chol = get_mean_and_chol(p)
mean_other, chol_other = get_mean_and_chol(q)
if scale_prec:
# maha objective for mean
mean_part = mahalanobis(mean, mean_other, chol_other)
else:
# euclidean distance for mean
# mean_part = ch.norm(mean_other - mean, ord=2, axis=1) ** 2
mean_part = ((mean_other - mean) ** 2).sum(1)
# frob objective for cov
cov = get_cov(p)
cov_other = get_cov(q)
diff = cov_other - cov
# Matrix is real symmetric PSD, therefore |A @ A^H|^2_F = tr{A @ A^H} = tr{A @ A}
#cov_part = torch_batched_trace(diff @ diff)
cov_part = frob_sq(diff, is_spd=True)
if return_cov:
return mean_part, cov_part, cov, cov_other
return mean_part, cov_part