Tidying
This commit is contained in:
parent
0702213e84
commit
6c7fc37116
134
metastable_projections/misc/distTools.py
Normal file
134
metastable_projections/misc/distTools.py
Normal file
@ -0,0 +1,134 @@
|
||||
import torch as th
|
||||
|
||||
from stable_baselines3.common.distributions import Distribution as SB3_Distribution
|
||||
|
||||
from ..distributions import UniversalGaussianDistribution, AnyDistribution
|
||||
|
||||
|
||||
def get_mean_and_chol(p: AnyDistribution, expand=False):
|
||||
if isinstance(p, th.distributions.Normal) or isinstance(p, th.distributions.Independent):
|
||||
if expand:
|
||||
return p.mean, th.diag_embed(p.stddev)
|
||||
else:
|
||||
return p.mean, p.stddev
|
||||
elif isinstance(p, th.distributions.MultivariateNormal):
|
||||
return p.mean, p.scale_tril
|
||||
elif isinstance(p, SB3_Distribution):
|
||||
return get_mean_and_chol(p.distribution, expand=expand)
|
||||
else:
|
||||
raise Exception('Dist-Type not implemented')
|
||||
|
||||
|
||||
def get_mean_and_sqrt(p: UniversalGaussianDistribution, expand=False):
|
||||
if not hasattr(p, 'cov_sqrt'):
|
||||
raise Exception(
|
||||
'Distribution was not induced from sqrt. On-demand calculation is not supported.')
|
||||
else:
|
||||
mean, chol = get_mean_and_chol(p, expand=False)
|
||||
sqrt_cov = p.cov_sqrt
|
||||
if mean.shape[0] != sqrt_cov.shape[0]:
|
||||
shape = list(sqrt_cov.shape)
|
||||
shape[0] = mean.shape[0]
|
||||
shape = tuple(shape)
|
||||
sqrt_cov = sqrt_cov.expand(shape)
|
||||
if expand and len(sqrt_cov.shape) <= 2:
|
||||
sqrt_cov = th.diag_embed(sqrt_cov)
|
||||
return mean, sqrt_cov
|
||||
|
||||
|
||||
def get_cov(p: AnyDistribution):
|
||||
if isinstance(p, th.distributions.Normal) or isinstance(p, th.distributions.Independent):
|
||||
return th.diag_embed(p.variance)
|
||||
elif isinstance(p, th.distributions.MultivariateNormal):
|
||||
return p.covariance_matrix
|
||||
elif isinstance(p, SB3_Distribution):
|
||||
return get_cov(p.distribution)
|
||||
else:
|
||||
raise Exception('Dist-Type not implemented')
|
||||
|
||||
|
||||
def has_diag_cov(p: AnyDistribution, numerical_check=False):
|
||||
if isinstance(p, SB3_Distribution):
|
||||
return has_diag_cov(p.distribution, numerical_check=numerical_check)
|
||||
if isinstance(p, th.distributions.Normal) or isinstance(p, th.distributions.Independent):
|
||||
return True
|
||||
if not numerical_check:
|
||||
return False
|
||||
# Check if matrix is diag
|
||||
cov = get_cov(p)
|
||||
return th.equal(cov - th.diag_embed(th.diagonal(cov, dim1=-2, dim2=-1)), th.zeros_like(cov))
|
||||
|
||||
|
||||
def is_contextual(p: AnyDistribution):
|
||||
# TODO: Implement for UniveralGaussianDist
|
||||
return False
|
||||
|
||||
|
||||
def get_diag_cov_vec(p: AnyDistribution, check_diag=True, numerical_check=False):
|
||||
if check_diag and not has_diag_cov(p, numerical_check=numerical_check):
|
||||
raise Exception('Cannot reduce cov-mat to diag-vec: Is not diagonal')
|
||||
return th.diagonal(get_cov(p), dim1=-2, dim2=-1)
|
||||
|
||||
|
||||
def new_dist_like(orig_p: AnyDistribution, mean: th.Tensor, chol: th.Tensor):
|
||||
if isinstance(orig_p, UniversalGaussianDistribution):
|
||||
return orig_p.new_dist_like_me(mean, chol)
|
||||
elif isinstance(orig_p, th.distributions.Normal):
|
||||
if orig_p.stddev.shape != chol.shape:
|
||||
chol = th.diagonal(chol, dim1=1, dim2=2)
|
||||
return th.distributions.Normal(mean, chol)
|
||||
elif isinstance(orig_p, th.distributions.Independent):
|
||||
if orig_p.stddev.shape != chol.shape:
|
||||
chol = th.diagonal(chol, dim1=1, dim2=2)
|
||||
return th.distributions.Independent(th.distributions.Normal(mean, chol), 1)
|
||||
elif isinstance(orig_p, th.distributions.MultivariateNormal):
|
||||
return th.distributions.MultivariateNormal(mean, scale_tril=chol)
|
||||
elif isinstance(orig_p, SB3_Distribution):
|
||||
p = orig_p.distribution
|
||||
if isinstance(p, th.distributions.Normal):
|
||||
p_out = orig_p.__class__(orig_p.action_dim)
|
||||
p_out.distribution = th.distributions.Normal(mean, chol)
|
||||
elif isinstance(p, th.distributions.Independent):
|
||||
p_out = orig_p.__class__(orig_p.action_dim)
|
||||
p_out.distribution = th.distributions.Independent(
|
||||
th.distributions.Normal(mean, chol), 1)
|
||||
elif isinstance(p, th.distributions.MultivariateNormal):
|
||||
p_out = orig_p.__class__(orig_p.action_dim)
|
||||
p_out.distribution = th.distributions.MultivariateNormal(
|
||||
mean, scale_tril=chol)
|
||||
else:
|
||||
raise Exception('Dist-Type not implemented (of sb3 dist)')
|
||||
return p_out
|
||||
else:
|
||||
raise Exception('Dist-Type not implemented')
|
||||
|
||||
|
||||
def new_dist_like_from_sqrt(orig_p: AnyDistribution, mean: th.Tensor, cov_sqrt: th.Tensor):
|
||||
chol = _sqrt_to_chol(cov_sqrt)
|
||||
|
||||
new = new_dist_like(orig_p, mean, chol)
|
||||
|
||||
new.cov_sqrt = cov_sqrt
|
||||
if hasattr(new, 'distribution'):
|
||||
new.distribution.cov_sqrt = cov_sqrt
|
||||
|
||||
return new
|
||||
|
||||
|
||||
def _sqrt_to_chol(cov_sqrt):
|
||||
vec = False
|
||||
if len(cov_sqrt.shape) == 2:
|
||||
vec = True
|
||||
|
||||
if vec:
|
||||
cov_sqrt = th.diag_embed(cov_sqrt)
|
||||
|
||||
cov = th.bmm(cov_sqrt.mT, cov_sqrt)
|
||||
cov += th.eye(cov.shape[-1]).expand(cov.shape)*(1e-6)
|
||||
|
||||
chol = th.linalg.cholesky(cov)
|
||||
|
||||
if vec:
|
||||
chol = th.diagonal(chol, dim1=-2, dim2=-1)
|
||||
|
||||
return chol
|
31
metastable_projections/misc/norm.py
Normal file
31
metastable_projections/misc/norm.py
Normal file
@ -0,0 +1,31 @@
|
||||
import torch as th
|
||||
from torch.distributions.multivariate_normal import _batch_mahalanobis
|
||||
|
||||
|
||||
def mahalanobis_alt(u, v, std):
|
||||
"""
|
||||
Stolen from Fabian's Code (Public Version)
|
||||
|
||||
"""
|
||||
delta = u - v
|
||||
return th.triangular_solve(delta, std, upper=False)[0].pow(2).sum([-2, -1])
|
||||
|
||||
|
||||
def mahalanobis(u, v, chol):
|
||||
delta = u - v
|
||||
return _batch_mahalanobis(chol, delta)
|
||||
|
||||
|
||||
def frob_sq(diff, is_spd=False):
|
||||
# If diff is spd, we can use a (probably) more performant algorithm
|
||||
if is_spd:
|
||||
return _frob_sq_spd(diff)
|
||||
return th.norm(diff, p='fro', dim=tuple(range(1, diff.dim()))).pow(2)
|
||||
|
||||
|
||||
def _frob_sq_spd(diff):
|
||||
return _batch_trace(diff @ diff)
|
||||
|
||||
|
||||
def _batch_trace(x):
|
||||
return th.diagonal(x, dim1=-2, dim2=-1).sum(-1)
|
4
setup.py
4
setup.py
@ -1,12 +1,12 @@
|
||||
from setuptools import setup, find_packages
|
||||
|
||||
setup(
|
||||
name='metastable-baselines',
|
||||
name='metastable-projections',
|
||||
version='1.0.0',
|
||||
# url='https://github.com/mypackage.git',
|
||||
# author='Author Name',
|
||||
# author_email='author@gmail.com',
|
||||
# description='Description of my package',
|
||||
packages=['.'],
|
||||
install_requires=['gym', 'stable_baselines3'],
|
||||
install_requires=['torch', 'stable_baselines3'],
|
||||
)
|
||||
|
Loading…
Reference in New Issue
Block a user