This commit is contained in:
Dominik Moritz Roth 2022-09-03 11:37:01 +02:00
parent 0702213e84
commit 6c7fc37116
8 changed files with 167 additions and 2 deletions

View File

@ -0,0 +1,134 @@
import torch as th
from stable_baselines3.common.distributions import Distribution as SB3_Distribution
from ..distributions import UniversalGaussianDistribution, AnyDistribution
def get_mean_and_chol(p: AnyDistribution, expand=False):
if isinstance(p, th.distributions.Normal) or isinstance(p, th.distributions.Independent):
if expand:
return p.mean, th.diag_embed(p.stddev)
else:
return p.mean, p.stddev
elif isinstance(p, th.distributions.MultivariateNormal):
return p.mean, p.scale_tril
elif isinstance(p, SB3_Distribution):
return get_mean_and_chol(p.distribution, expand=expand)
else:
raise Exception('Dist-Type not implemented')
def get_mean_and_sqrt(p: UniversalGaussianDistribution, expand=False):
if not hasattr(p, 'cov_sqrt'):
raise Exception(
'Distribution was not induced from sqrt. On-demand calculation is not supported.')
else:
mean, chol = get_mean_and_chol(p, expand=False)
sqrt_cov = p.cov_sqrt
if mean.shape[0] != sqrt_cov.shape[0]:
shape = list(sqrt_cov.shape)
shape[0] = mean.shape[0]
shape = tuple(shape)
sqrt_cov = sqrt_cov.expand(shape)
if expand and len(sqrt_cov.shape) <= 2:
sqrt_cov = th.diag_embed(sqrt_cov)
return mean, sqrt_cov
def get_cov(p: AnyDistribution):
if isinstance(p, th.distributions.Normal) or isinstance(p, th.distributions.Independent):
return th.diag_embed(p.variance)
elif isinstance(p, th.distributions.MultivariateNormal):
return p.covariance_matrix
elif isinstance(p, SB3_Distribution):
return get_cov(p.distribution)
else:
raise Exception('Dist-Type not implemented')
def has_diag_cov(p: AnyDistribution, numerical_check=False):
if isinstance(p, SB3_Distribution):
return has_diag_cov(p.distribution, numerical_check=numerical_check)
if isinstance(p, th.distributions.Normal) or isinstance(p, th.distributions.Independent):
return True
if not numerical_check:
return False
# Check if matrix is diag
cov = get_cov(p)
return th.equal(cov - th.diag_embed(th.diagonal(cov, dim1=-2, dim2=-1)), th.zeros_like(cov))
def is_contextual(p: AnyDistribution):
# TODO: Implement for UniveralGaussianDist
return False
def get_diag_cov_vec(p: AnyDistribution, check_diag=True, numerical_check=False):
if check_diag and not has_diag_cov(p, numerical_check=numerical_check):
raise Exception('Cannot reduce cov-mat to diag-vec: Is not diagonal')
return th.diagonal(get_cov(p), dim1=-2, dim2=-1)
def new_dist_like(orig_p: AnyDistribution, mean: th.Tensor, chol: th.Tensor):
if isinstance(orig_p, UniversalGaussianDistribution):
return orig_p.new_dist_like_me(mean, chol)
elif isinstance(orig_p, th.distributions.Normal):
if orig_p.stddev.shape != chol.shape:
chol = th.diagonal(chol, dim1=1, dim2=2)
return th.distributions.Normal(mean, chol)
elif isinstance(orig_p, th.distributions.Independent):
if orig_p.stddev.shape != chol.shape:
chol = th.diagonal(chol, dim1=1, dim2=2)
return th.distributions.Independent(th.distributions.Normal(mean, chol), 1)
elif isinstance(orig_p, th.distributions.MultivariateNormal):
return th.distributions.MultivariateNormal(mean, scale_tril=chol)
elif isinstance(orig_p, SB3_Distribution):
p = orig_p.distribution
if isinstance(p, th.distributions.Normal):
p_out = orig_p.__class__(orig_p.action_dim)
p_out.distribution = th.distributions.Normal(mean, chol)
elif isinstance(p, th.distributions.Independent):
p_out = orig_p.__class__(orig_p.action_dim)
p_out.distribution = th.distributions.Independent(
th.distributions.Normal(mean, chol), 1)
elif isinstance(p, th.distributions.MultivariateNormal):
p_out = orig_p.__class__(orig_p.action_dim)
p_out.distribution = th.distributions.MultivariateNormal(
mean, scale_tril=chol)
else:
raise Exception('Dist-Type not implemented (of sb3 dist)')
return p_out
else:
raise Exception('Dist-Type not implemented')
def new_dist_like_from_sqrt(orig_p: AnyDistribution, mean: th.Tensor, cov_sqrt: th.Tensor):
chol = _sqrt_to_chol(cov_sqrt)
new = new_dist_like(orig_p, mean, chol)
new.cov_sqrt = cov_sqrt
if hasattr(new, 'distribution'):
new.distribution.cov_sqrt = cov_sqrt
return new
def _sqrt_to_chol(cov_sqrt):
vec = False
if len(cov_sqrt.shape) == 2:
vec = True
if vec:
cov_sqrt = th.diag_embed(cov_sqrt)
cov = th.bmm(cov_sqrt.mT, cov_sqrt)
cov += th.eye(cov.shape[-1]).expand(cov.shape)*(1e-6)
chol = th.linalg.cholesky(cov)
if vec:
chol = th.diagonal(chol, dim1=-2, dim2=-1)
return chol

View File

@ -0,0 +1,31 @@
import torch as th
from torch.distributions.multivariate_normal import _batch_mahalanobis
def mahalanobis_alt(u, v, std):
"""
Stolen from Fabian's Code (Public Version)
"""
delta = u - v
return th.triangular_solve(delta, std, upper=False)[0].pow(2).sum([-2, -1])
def mahalanobis(u, v, chol):
delta = u - v
return _batch_mahalanobis(chol, delta)
def frob_sq(diff, is_spd=False):
# If diff is spd, we can use a (probably) more performant algorithm
if is_spd:
return _frob_sq_spd(diff)
return th.norm(diff, p='fro', dim=tuple(range(1, diff.dim()))).pow(2)
def _frob_sq_spd(diff):
return _batch_trace(diff @ diff)
def _batch_trace(x):
return th.diagonal(x, dim1=-2, dim2=-1).sum(-1)

View File

@ -1,12 +1,12 @@
from setuptools import setup, find_packages
setup(
name='metastable-baselines',
name='metastable-projections',
version='1.0.0',
# url='https://github.com/mypackage.git',
# author='Author Name',
# author_email='author@gmail.com',
# description='Description of my package',
packages=['.'],
install_requires=['gym', 'stable_baselines3'],
install_requires=['torch', 'stable_baselines3'],
)