Clean up and make cpp_projections optional

This commit is contained in:
Dominik Moritz Roth 2024-01-16 15:25:34 +01:00
parent 7538599f74
commit a5309e0fb8
6 changed files with 81 additions and 7 deletions

View File

@ -0,0 +1 @@
from .projections import *

View File

@ -1,5 +1,13 @@
#TODO: License or such #TODO: License or such
from .base_projection_layer import BaseProjectionLayer from .base_projection_layer import BaseProjectionLayer
from .identity_projection_layer import IdentityProjectionLayer
from .frob_projection_layer import FrobeniusProjectionLayer from .frob_projection_layer import FrobeniusProjectionLayer
from .kl_projection_layer import KLProjectionLayer
from .w2_projection_layer import WassersteinProjectionLayer from .w2_projection_layer import WassersteinProjectionLayer
try:
import cpp_projection
except ModuleNotFoundError:
print('[MSB] ITPAL is not installed; KL projections not avaible.')
from .base_projection_layer import ExceptionProjectionLayer as KLProjectionLayer
else:
from .kl_projection_layer import KLProjectionLayer

View File

@ -9,7 +9,6 @@ from ..misc.distTools import *
class BaseProjectionLayer(object): class BaseProjectionLayer(object):
def __init__(self, def __init__(self,
mean_bound: float = 0.03, mean_bound: float = 0.03,
cov_bound: float = 1e-3, cov_bound: float = 1e-3,
@ -30,10 +29,8 @@ class BaseProjectionLayer(object):
self.entropy_first = entropy_first self.entropy_first = entropy_first
self.entropy_proj = entropy_equality_projection if entropy_eq else entropy_inequality_projection self.entropy_proj = entropy_equality_projection if entropy_eq else entropy_inequality_projection
def __call__(self, p, q, step, *args, **kwargs): def __call__(self, p, q, **kwargs):
# TODO: self.entropy_schedule(self.initial_entropy, self.target_entropy, self.temperature, step) * p[0].new_ones(p[0].shape[0]) return self._projection(p, q, eps=self.mean_bound, eps_cov=self.cov_bound, beta=None, **kwargs)
entropy_bound = 'lol'
return self._projection(p, q, eps=self.mean_bound, eps_cov=self.cov_bound, beta=entropy_bound, **kwargs)
@final @final
def _projection(self, p, q, eps: th.Tensor, eps_cov: th.Tensor, beta: th.Tensor, **kwargs): def _projection(self, p, q, eps: th.Tensor, eps_cov: th.Tensor, beta: th.Tensor, **kwargs):
@ -71,6 +68,22 @@ class BaseProjectionLayer(object):
return self.entropy_proj(new_p, beta) return self.entropy_proj(new_p, beta)
def project_from_rollouts(self, dist, rollout_data, **kwargs):
"""
Hook for implementing the specific trust region projection
Args:
p: current distribution
q: old distribution
eps: mean trust region bound
eps_cov: covariance trust region bound
**kwargs:
Returns:
projected_dist, old_dist (from rollouts)
"""
old_distribution = self.new_dist_like(dist, rollout_data.means, rollout_data.cov_decomps)
return self(dist, old_distribution, **kwargs), old_distribution
def _trust_region_projection(self, p, q, eps: th.Tensor, eps_cov: th.Tensor, **kwargs): def _trust_region_projection(self, p, q, eps: th.Tensor, eps_cov: th.Tensor, **kwargs):
""" """
Hook for implementing the specific trust region projection Hook for implementing the specific trust region projection
@ -108,6 +121,23 @@ class BaseProjectionLayer(object):
""" """
return kl_divergence(p, q) return kl_divergence(p, q)
def new_dist_like(orig_p, mean, cov_cholesky):
assert isinstance(orig_p, Distribution)
p = orig_p.distribution
if isinstance(p, th.distributions.Normal):
p_out = orig_p.__class__(orig_p.action_dim)
p_out.distribution = th.distributions.Normal(mean, cov_cholesky)
elif isinstance(p, th.distributions.Independent):
p_out = orig_p.__class__(orig_p.action_dim)
p_out.distribution = th.distributions.Independent(
th.distributions.Normal(mean, cov_cholesky), 1)
elif isinstance(p, th.distributions.MultivariateNormal):
p_out = orig_p.__class__(orig_p.action_dim)
p_out.distribution = th.distributions.MultivariateNormal(
mean, scale_tril=cov_cholesky)
else:
raise Exception('Dist-Type not implemented (of sb3 dist)')
return p_out
def entropy_inequality_projection(p: th.distributions.Normal, def entropy_inequality_projection(p: th.distributions.Normal,
beta: Union[float, th.Tensor]): beta: Union[float, th.Tensor]):
@ -219,3 +249,10 @@ def mean_equality_projection(mean: th.Tensor, old_mean: th.Tensor, maha: th.Tens
proj_mean = (mean + omega * old_mean) / (1 + omega + 1e-16) proj_mean = (mean + omega * old_mean) / (1 + omega + 1e-16)
return proj_mean return proj_mean
class ExceptionProjectionLayer(BaseProjectionLayer):
def __init__(self,
*args, **kwargs
):
raise Exception('To be able to use KL projections, ITPAL must be installed: https://github.com/ALRhub/ITPAL (Private Repo).')

View File

@ -0,0 +1,5 @@
from .base_projection_layer import BaseProjectionLayer
class IdentityProjectionLayer(BaseProjectionLayer):
def project_from_rollouts(self, dist, rollout_data, **kwargs):
return dist, dist

View File

@ -138,7 +138,10 @@ class KLProjectionGradFunctionDiagCovOnly(th.autograd.Function):
batch_shape, dim) batch_shape, dim)
ctx.proj = p_op ctx.proj = p_op
try:
proj_std = p_op.forward(eps, old_std_np, std_np) proj_std = p_op.forward(eps, old_std_np, std_np)
except:
proj_std = std_np
return cov.new(proj_std) return cov.new(proj_std)

View File

@ -9,6 +9,8 @@ from .base_projection_layer import BaseProjectionLayer, mean_projection
from ..misc.norm import mahalanobis, _batch_trace from ..misc.norm import mahalanobis, _batch_trace
from ..misc.distTools import get_diag_cov_vec, get_mean_and_chol, get_mean_and_sqrt, get_cov, new_dist_like_from_sqrt, has_diag_cov from ..misc.distTools import get_diag_cov_vec, get_mean_and_chol, get_mean_and_sqrt, get_cov, new_dist_like_from_sqrt, has_diag_cov
from stable_baselines3.common.distributions import Distribution
class WassersteinProjectionLayer(BaseProjectionLayer): class WassersteinProjectionLayer(BaseProjectionLayer):
""" """
@ -92,6 +94,24 @@ class WassersteinProjectionLayer(BaseProjectionLayer):
return kl_loss * self.trust_region_coeff return kl_loss * self.trust_region_coeff
def new_dist_like(orig_p, mean, cov_sqrt):
assert isinstance(orig_p, Distribution)
p = orig_p.distribution
if isinstance(p, th.distributions.Normal):
p_out = orig_p.__class__(orig_p.action_dim)
p_out.distribution = th.distributions.Normal(mean, cov_sqrt)
elif isinstance(p, th.distributions.Independent):
p_out = orig_p.__class__(orig_p.action_dim)
p_out.distribution = th.distributions.Independent(
th.distributions.Normal(mean, cov_sqrt), 1)
elif isinstance(p, th.distributions.MultivariateNormal):
p_out = orig_p.__class__(orig_p.action_dim)
p_out.distribution = th.distributions.MultivariateNormal(
mean, scale_tril=cov_sqrt)
else:
raise Exception('Dist-Type not implemented (of sb3 dist)')
return p_out
def gaussian_wasserstein_commutative(p, q, scale_prec=False) -> Tuple[th.Tensor, th.Tensor]: def gaussian_wasserstein_commutative(p, q, scale_prec=False) -> Tuple[th.Tensor, th.Tensor]:
""" """